Hugo A. van den Berg
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo A. van den Berg.
Journal of Biological Chemistry | 2012
Linda Wooldridge; Julia Ekeruche-Makinde; Hugo A. van den Berg; Anna Skowera; John J. Miles; Mai Ping Tan; Garry Dolton; Mathew Clement; Sian Llewellyn-Lacey; David A. Price; Mark Peakman; Andrew K. Sewell
Background: How does a limited pool of <108 T cell receptors (TCRs) provide immunity to >1015 antigens? Results: A single TCR can respond to >one million different decamer peptides. Conclusion: This unprecedented level of receptor promiscuity explains how the naïve TCR repertoire achieves effective immunity. Significance: TCR degeneracy has enormous potential to be the root cause of autoimmune disease. The T cell receptor (TCR) orchestrates immune responses by binding to foreign peptides presented at the cell surface in the context of major histocompatibility complex (MHC) molecules. Effective immunity requires that all possible foreign peptide-MHC molecules are recognized or risks leaving holes in immune coverage that pathogens could quickly evolve to exploit. It is unclear how a limited pool of <108 human TCRs can successfully provide immunity to the vast array of possible different peptides that could be produced from 20 proteogenic amino acids and presented by self-MHC molecules (>1015 distinct peptide-MHCs). One possibility is that T cell immunity incorporates an extremely high level of receptor degeneracy, enabling each TCR to recognize multiple peptides. However, the extent of such TCR degeneracy has never been fully quantified. Here, we perform a comprehensive experimental and mathematical analysis to reveal that a single patient-derived autoimmune CD8+ T cell clone of pathogenic relevance in human type I diabetes recognizes >one million distinct decamer peptides in the context of a single MHC class I molecule. A large number of peptides that acted as substantially better agonists than the wild-type “index” preproinsulin-derived peptide (ALWGPDPAAA) were identified. The RQFGPDFPTI peptide (sampled from >108 peptides) was >100-fold more potent than the index peptide despite differing from this sequence at 7 of 10 positions. Quantification of this previously unappreciated high level of CD8+ T cell cross-reactivity represents an important step toward understanding the system requirements for adaptive immunity and highlights the enormous potential of TCR degeneracy to be the causative factor in autoimmune disease.
Journal of Biological Chemistry | 2007
Bruno Laugel; Hugo A. van den Berg; Emma Gostick; David K. Cole; Linda Wooldridge; Jonathan M. Boulter; Anita Milicic; David H. Price; Andrew K. Sewell
T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < ∼80 μm and ∼35 μm, respectively, to label human CTLs at 37 °C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 μm. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.
Immunology | 2009
Linda Wooldridge; Anna Lissina; David K. Cole; Hugo A. van den Berg; David A. Price; Andrew K. Sewell
The development of fluorochrome‐conjugated peptide–major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen‐specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the ‘tricks’ that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very‐low‐affinity T‐cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour‐specific responses; and (3) the physical grading and clonotypic dissection of antigen‐specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T‐cell activation, manipulate T‐cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of ‘coreceptor help’.
Journal of Immunological Methods | 2009
Anna Lissina; Kristin Ladell; Ania Skowera; Mathew Clement; Ruth Seggewiss; Hugo A. van den Berg; Emma Gostick; Kathleen Gallagher; Emma Jones; J. Joseph Melenhorst; Andrew James Godkin; Mark Peakman; David A. Price; Andrew K. Sewell; Linda Wooldridge
Flow cytometry with fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) tetramers has transformed the study of antigen-specific T-cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we demonstrate that the reversible protein kinase inhibitor (PKI) dasatinib improves the staining intensity of human (CD8+ and CD4+) and murine T-cells without concomitant increases in background staining. Dasatinib enhances the capture of cognate pMHC tetramers from solution and produces higher intensity staining at lower pMHC concentrations. Furthermore, dasatinib reduces pMHC tetramer-induced cell death and substantially lowers the T-cell receptor (TCR)/pMHC interaction affinity threshold required for cell staining. Accordingly, dasatinib permits the identification of T-cells with very low affinity TCR/pMHC interactions, such as those that typically predominate in tumour-specific responses and autoimmune conditions that are not amenable to detection by current technology.
European Journal of Immunology | 2007
Linda Wooldridge; Anna Lissina; Jonathan Vernazza; Emma Gostick; Bruno Laugel; Sarah L. Hutchinson; Fareed Mirza; P. Rod Dunbar; Jonathan M. Boulter; Meir Glick; Vincenzo Cerundolo; Hugo A. van den Berg; David A. Price; Andrew K. Sewell
CD8+ cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide‐MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and facilitates antigen recognition. Here, we investigate the biological effects of a Q115E substitution in the α2 domain of human leukocyte antigen (HLA)‐A*0201 that enhances CD8 binding by ∼50% without altering TCR/pMHCI interactions. Soluble and cell surface‐expressed forms of Q115E HLA‐A*0201 exhibit enhanced recognition by CTL without loss of specificity. These CD8‐enhanced antigens induce greater CD3 ζ chain phosphorylation in cognate CTL leading to substantial increases in cytokine production, proliferation and priming of naive T cells. This effect provides a fundamental new mechanism with which to enhance cellular immunity to specific T cell antigens.
Blood | 2013
Julia Ekeruche-Makinde; John J. Miles; Hugo A. van den Berg; Ania Skowera; David K. Cole; Garry Dolton; Andrea J. A. Schauenburg; Mai Ping Tan; Johanne M. Pentier; Sian Llewellyn-Lacey; Kim M. Miles; Anna M. Bulek; Mathew Clement; Tamsin Williams; Andrew Trimby; Mick Bailey; Pierre J. Rizkallah; Jamie Rossjohn; Mark Peakman; David A. Price; Scott R. Burrows; Andrew K. Sewell; Linda Wooldridge
αβ-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.
Journal of Immunology | 2010
Linda Wooldridge; Bruno Laugel; Julia Ekeruche; Mathew Clement; Hugo A. van den Berg; David A. Price; Andrew K. Sewell
Estimates of human αβ TCR diversity suggest that there are <108 different Ag receptors in the naive T cell pool, a number that is dwarfed by the potential number of different antigenic peptide-MHC (pMHC) molecules that could be encountered. Consequently, an extremely high degree of cross-reactivity is essential for effective T cell immunity. Ag recognition by T cells is unique in that it involves a coreceptor that binds at a site distinct from the TCR to facilitate productive engagement of the pMHC. In this study, we show that the CD8 coreceptor controls T cell cross-reactivity for pMHCI Ags, thereby ensuring that the peripheral T cell repertoire is optimally poised to negotiate the competing demands of responsiveness in the face of danger and quiescence in the presence of self.
Frontiers in Immunology | 2013
Hugo A. van den Berg; Kristin Ladell; Kelly Louise Miners; Bruno Laugel; Sian Llewellyn-Lacey; Mathew Clement; David K. Cole; Emma Gostick; Linda Wooldridge; Andrew K. Sewell; John S. Bridgeman; David A. Price
Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles.
Journal of Theoretical Biology | 2008
Emily R. Stirk; Carmen Molina-Paris; Hugo A. van den Berg
The reliability of the immune response to pathogenic challenge depends critically on the size and diversity of the T cell repertoire. We study naïve T cell repertoire diversity maintenance by a stochastic model that incorporates the concept of competition between T cells for survival stimuli emanating from self-antigen presenting cells (APCs). In the mean field approximation we show that clonotype extinction is certain and compute mean extinction times. We introduce the concept of mean niche overlap and show that clones with a mean niche overlap greater than one have a short repertoire lifespan. This selection differential induces minimal recognition commonality between T cell receptors (TCRs) resulting in a diverse T cell repertoire.
Journal of Immunological Methods | 2008
J. Joseph Melenhorst; Phillip Scheinberg; Pratip K. Chattopadhyay; Anna Lissina; Emma Gostick; David K. Cole; Linda Wooldridge; Hugo A. van den Berg; Ethan Bornstein; Nancy Hensel; Mario Roederer; Andrew K. Sewell; A. John Barrett; David A. Price
The development of soluble recombinant peptide-major histocompatibility complex class I (pMHCI) molecules conjugated in multimeric form to fluorescent labels has enabled the physical quantification and characterization of antigen-specific CD8(+) T cell populations by flow cytometry. Several factors determine the binding threshold that enables visualization of cognate CD8(+) T cells with these reagents; these include the affinity of the T cell receptor (TCR) for pMHCI antigen. Here, we show that multimers constructed from peptide-human leukocyte antigen (pHLA) A0201 monomers engineered in the heavy chain alpha2 domain to enhance CD8 binding (K(D) approximately 85 microM) without impacting the TCR binding platform can detect cognate CD8(+) T cells bearing low affinity TCRs that are not visible with the corresponding wildtype pHLA A0201 multimeric complexes. Mechanistically, this effect is mediated by a disproportionate enhancement of the TCR/pMHCI association rate. In direct ex vivo applications, these coreceptor-enhanced multimers exhibit faithful cognate binding properties; concomitant increases in background staining within the non-cognate CD8(+) T cell population can be resolved phenotypically using polychromatic flow cytometry as a mixture of naïve and memory cells. These findings provide the first validation of a novel approach to the physical detection of low avidity antigen-specific CD8(+) T cell populations; such coreceptor-enhanced multimeric reagents are likely to be useful in a multitude of settings for the detection of auto-immune, tumor-specific and cross-reactive CD8(+) T cells.