Hugo Cabedo
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo Cabedo.
The EMBO Journal | 1999
Hugo Cabedo; Fernando Macián; Magda Villarroya; Juan C. Escudero; Marta Martínez-Vicente; Erwin Knecht; M.-Eugenia Armengod
The evolutionarily conserved 50K protein of Escherichia coli, encoded by o454, contains a consensus GTP‐binding motif. Here we show that 50K is a GTPase that differs extensively from regulatory GTPases such as p21. Thus, 50K exhibits a very high intrinsic GTPase hydrolysis rate, rather low affinity for GTP, and extremely low affinity for GDP. Moreover, it can form self‐assemblies. Strikingly, the 17 kDa GTPase domain of 50K conserves the guanine nucleotide‐binding and GTPase activities of the intact 50K molecule. Therefore, the structural requirements for GTP binding and GTP hydrolysis by 50K are without precedent and justify a separate classification in the GTPase superfamily. Immunoelectron microscopy reveals that 50K is a cytoplasmic protein partially associated with the inner membrane. We prove that o454 is allelic with trmE, a gene involved in the biosynthesis of the hypermodified nucleoside 5‐methylaminomethyl‐2‐thiouridine, which is found in the wobble position of some tRNAs. Our results demonstrate that 50K is essential for viability depending on the genetic background. We propose that combination of mutations affecting the decoding process, which separately do not reveal an obvious defect in growth, can give rise to lethal phenotypes, most likely due to synergism.
Journal of Biological Chemistry | 2009
Cruz Morenilla-Palao; María Pertusa; Víctor M. Meseguer; Hugo Cabedo; Félix Viana
Transient receptor potential channels are a family of cation channels involved in diverse cellular functions. Most of these channels are expressed in the nervous system and play a key role in sensory physiology. TRPM8 (transient receptor potential melastatine 8), a member of this family, is activated by cold, cooling substances such menthol and icilin and voltage. Although TRPM8 is a thermosensitive channel highly expressed in cold sensory neurons, the mechanisms underlying its temperature sensitivity are still poorly understood. Here we show that, in sensory neurons, TRPM8 channel is localized in cholesterol-rich specialized membrane domains known as lipid rafts. We also show that, in heterologous expression systems, lipid raft segregation of TRPM8 is favored by glycosylation at the Asn934 residue of the polypeptide. In electrophysiological and imaging experiments, using cold and menthol as agonists, we also demonstrate that lipid raft association modulates TRPM8 channel activity. We found that menthol- and cold-mediated responses of TRPM8 are potentiated when the lipid raft association of the channel is prevented. In addition, lipid raft disruption shifts the threshold for TRPM8 activation to a warmer temperature. In view of these data, we suggest a role for lipid rafts in the activity and temperature sensitivity of TRPM8. We propose a model wherein different lipid membrane environments affect the cold sensing properties of TRPM8, modulating the response of cold thermoreceptors.
The Journal of Physiology | 2005
Elvira de la Peña; Annika Mälkiä; Hugo Cabedo; Carlos Belmonte; Félix Viana
Different classes of ion channels have been implicated in sensing cold temperatures at mammalian thermoreceptor nerve endings. A major candidate is TRPM8, a non‐selective cation channel of the transient receptor potential family, activated by menthol and low temperatures. We investigated the role of TRPM8 in cold sensing during transient expression in mouse cultured hippocampal neurones, a tissue that lacks endogenous expression of thermosensitive TRPs. In the absence of synaptic input, control hippocampal neurones were not excited by cooling. In contrast, all TRPM8‐transfected hippocampal neurones were excited by cooling and menthol. However, in comparison to cold‐sensitive trigeminal sensory neurones, hippocampal neurones exhibited much lower threshold temperatures, requiring temperatures below 27°C to fire action potentials. These results directly demonstrate that expression of TRPM8 in mammalian neurones induces cold sensing, albeit at lower temperatures than native TRPM8‐expressing neurones, suggesting the presence of additional modulatory mechanisms in the cold response of sensory neurones.
Journal of Cell Science | 2006
Christelle Carteron; Antonio Ferrer-Montiel; Hugo Cabedo
Neuregulins are a family of genes involved in key aspects of neural biology. Neuregulins 1, 2 and 3 (NRG1, NRG2 and NRG3) are expressed in the mammalian nervous system. It is well established that NRG1, with fifteen different splicing forms, is central for brain development and function. However, the biological relevance of NRG2 and NRG3 remains elusive. Here, we report the identification of a new isoform of NRG3 that is specifically expressed in the human embryonic central nervous system. Sequence alignment with the human genome suggests that this transcript is produced by alternative promoter usage. The encoded polypeptide is a type-I-glycosylated plasma membrane protein, which is shed into the extracellular space where it activates erbB4, a pivotal receptor for brain development. In addition, we show that the protein has a signal sequence that is cleaved after membrane insertion. Proteasome inhibition with Lactacystin enhances the expression of the protein, whereas impairment of ubiquitylation in the conditional mutant cell line ts20 protects the protein from degradation. These observations imply that the ubiquitin/proteasome pathway regulates biogenesis of the protein. We also show that recombinant neuregulin 3 acts as an oligodendrocyte survival factor by activating the phosphoinositide 3-kinase signalling pathway. Therefore, we report a new post-translationally regulated isoform of neuregulin 3 expressed in the developing human central nervous system with a role in oligodendrocyte survival.
The EMBO Journal | 2003
Marco Caprini; Ana Gomis; Hugo Cabedo; Rosa Planells-Cases; Carlos Belmonte; Félix Viana; Antonio Ferrer-Montiel
The identification of osmo/mechanosensory proteins in mammalian sensory neurons is still elusive. We have used an expression cloning approach to screen a human dorsal root ganglion cDNA library to look for proteins that respond to hypotonicity by raising the intracellular Ca2+ concentration ([Ca2+]i). We report the unexpected identification of GAP43 (also known as neuromodulin or B50), a membrane‐anchored neuronal protein implicated in axonal growth and synaptic plasticity, as an osmosensory protein that augments [Ca2+]i in response to hypotonicity. Palmitoylation of GAP43 plays an important role in the protein osmosensitivity. Depletion of intracellular stores or inhibition of phospholipase C (PLC) activity abrogates hypotonicity‐evoked, GAP43‐mediated [Ca2+]i elevations. Notably, hypotonicity promoted the selective association of GAP43 with the PLC‐δ1 isoform, and a concomitant increase in inositol‐1,4,5‐trisphosphate (IP3) formation. Collectively, these findings indicate that hypo‐osmotic activation of GAP43 induces Ca2+ release from IP3‐sensitive intracellular stores. The osmosensitivity of GAP43 furnishes a mechanistic framework that links axon elongation with phospho inositide metabolism, spontaneous triggering of cytosolic Ca2+ transients and the regulation of actin dynamics and motility at the growth cone in response to temporal and local mechanical forces.
Journal of Biological Chemistry | 2007
María Pertusa; Cruz Morenilla-Palao; Christelle Carteron; Félix Viana; Hugo Cabedo
A characteristic feature of many vertebrate axons is their wrapping by a lamellar stack of glially derived membranes known as the myelin sheath. Myelin is a cholesterol-rich membrane that allows for rapid saltatory nerve impulse conduction. Axonal neuregulins instruct glial cells on when and how much myelin they should produce. However, how neuregulin regulates myelin sheath development and thickness is unknown. Here we show that neuregulin receptors are activated by drops in plasma membrane cholesterol, suggesting that they can sense sterol levels. In Schwann cells neuregulin-1 increases the transcription of the 3-hydroxy-3-methylglutarylcoenzyme A reductase, the rate-limiting enzyme for cholesterol biosynthesis. Neuregulin activity is mediated by the phosphatidylinositol 3-kinase pathway and a cAMP-response element located on the reductase promoter. We propose that by activating neuregulin receptors, neurons exploit a cholesterol homeostatic mechanism forcing Schwann cells to produce new membranes for the myelin sheath. We also show that a strong phylogenetic correlation exists between myelination and cholesterol biosynthesis, and we propose that the absence of the sterol branch of the mevalonate pathway in invertebrates precluded the myelination of their nervous system.
Brain | 2013
Jose Antonio Gomez-Sanchez; Clara Gomis-Coloma; Cruz Morenilla-Palao; Gloria Peiro; Eduard Serra; Manuel Serrano; Hugo Cabedo
The number of Schwann cells is fitted to axonal length in peripheral nerves. This relationship is lost when tumorigenic stimuli induce uncontrolled Schwann cell proliferation, generating tumours such us neurofibromas and schwannomas. Schwann cells also re-enter the cell cycle following nerve injury during the process of Wallerian degeneration. In both cases proliferation is finally arrested. We show that in neurofibroma, the induction of Jmjd3 (jumonji domain containing 3, histone lysine demethylase) removes trimethyl groups on lysine-27 of histone-H3 and epigenetically activates the Ink4a/Arf-locus, forcing Schwann cells towards replicative senescence. Remarkably, blocking this mechanism allows unrestricted proliferation, inducing malignant transformation of neurofibromas. Interestingly, our data suggest that in injured nerves, Schwann cells epigenetically activate the same locus to switch off proliferation and enter the senescence programme. Indeed, when this pathway is genetically blocked, Schwann cells fail to drop out of the cell cycle and continue to proliferate. We postulate that the Ink4a/Arf-locus is expressed as part of a physiological response that prevents uncontrolled proliferation of the de-differentiated Schwann cell generated during nerve regeneration, a response that is also activated to avoid overproliferation after tumorigenic stimuli in the peripheral nervous system.
The Journal of Neuroscience | 2009
Jose Antonio Gomez-Sanchez; Mikel Lopez de Armentia; Rafael Luján; Nicoletta Kessaris; William D. Richardson; Hugo Cabedo
Type III neuregulins exposed on axon surfaces control myelination of the peripheral nervous system. It has been shown, for example, that threshold levels of type III β1a neuregulin dictate not only the myelination fate of axons but also myelin thickness. Here we show that another neuregulin isoform, type III-β3, plays a distinct role in myelination. Neuronal overexpression of this isoform in mice stimulates Schwann cell proliferation and dramatically enlarges peripheral nerves and ganglia—which come to resemble plexiform neurofibromas—but have no effect on myelin thickness. The nerves display other neurofibroma-like properties, such as abundant collagen fibrils and abundant dissociated Schwann cells that in some cases produce big tumors. Moreover, the organization of Remak bundles is dramatically altered; the small-caliber axons of each bundle are no longer segregated from one another within the cytoplasm of a nonmyelinating Schwann cell but instead are close packed and the whole bundle wrapped as a single unit, frequently by a compact myelin sheath. Because Schwann cell hyperproliferation and Remak bundle degeneration are early hallmarks of type I neurofibromatosis, we suggest that sustained activation of the neuregulin pathway in Remak bundles can contribute to neurofibroma development.
PLOS ONE | 2012
Emanuelle Donier; Jose Antonio Gomez-Sanchez; Carmen Grijota-Martinez; Jarmila Lakomá; Sigrid Baars; Luis Garcia-Alonso; Hugo Cabedo
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM.
bioRxiv | 2018
Emma Velasquez; Jose Antonio Gomez-Sanchez; Emmanuelle Donier; Carmen Grijota-Martinez; Hugo Cabedo; Luis Garcia-Alonso
How cell to cell interactions control local tissue growth to attain a species-specific pattern and organ size is a central question in developmental biology. The Drosophila Neural Cell Adhesion Molecule, Fasciclin 2 (Drosophila NCAM), is expressed during the development of neural and epithelial organs. Genetic mosaic analysis of Fasciclin 2 reveals two complementary and opposing functions during imaginal disc growth, a cell autonomous requirement to promote growth and an opposite non-cell autonomous function to restrain growth at high expression levels. This non-cell autonomous function is mediated by the Fasciclin 2 heterophilic-binding partners CG15630 and CG33543. We show that EGFR physically interacts with Fasciclin 2 and mediates both the cell autonomous and the non-cell autonomous function. We further show that EGFR activity in turn promotes the cell autonomous expression of Fasciclin 2. We suggest that the auto-stimulatory loop between EGFR and Fasciclin 2 operates until reaching a threshold where the Fasciclin 2 non-cell autonomous function counteracts the growth-promoting activity of the homophilic interaction to terminate imaginal disc growth. Accordingly, we have found that Fasciclin 2 limits imaginal disc growth by the end of larval development. Cellular integration of Fasciclin 2 autonomous and non-cell autonomous signaling from neighbor cells may be a key regulator component to orchestrate the rate of intercalary cell proliferation and the final size of an organ. Author Summary One of the key unsolved problems in Biology is how a species-specific size is attained during animal development. During development cells should compute the amount of intercalary tissue growth to stop cell proliferation when reaching a correct pattern and size. Classic studies demonstrated that local cell interactions are key in controlling organ growth to reach a correct size and pattern in vertebrates and invertebrates. We present evidence strongly suggesting that Fasciclin 2 (the ortholog of NCAM in Drosophila) functions as a growth level switch to control pattern and organ size. First, we use genetic mosaic analyses to show that Fasciclin 2 promotes organ growth in a cell autonomous manner. Then we show that Fasciclin 2 restrains growth at high expression levels in a non-cell autonomous manner, and that there is a requirement for Fasciclin 2 to limit growth by the end of larval development. This function is dependent on Fasciclin 2 heterophilic binding partners CG15630 and CG33543. The Epidermal Growth Factor receptor mediates both functional facets of Fasciclin 2 and its activity in turn increases Fasciclin 2 cell autonomous expression, suggesting the existence of a functional auto-stimulatory loop. We also show that the Epidermal Growth Factor receptor and Fasciclin 2 physically interact. Our results show that the amount of Fasciclin 2 between cells determines organ size by acting as an expression level switch for EGFR function, and suggest that other specific CAM interactions may integrate similar expression level switches acting as a code for cells to compute local growth in attaining a species-specific organ size and shape.