Hugo Defienne
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo Defienne.
Science Advances | 2016
Hugo Defienne; Marco Barbieri; Ian A. Walmsley; Brian J. Smith; Sylvain Gigan
Control of a two-photon quantum walk in a complex multimode system by wavefront shaping. Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication.
Physical Review Letters | 2016
Mickael Mounaix; Daria Andreoli; Hugo Defienne; Giorgio Volpe; Ori Katz; Samuel Gresillon; Sylvain Gigan
We report the broadband characterization of the propagation of light through a multiple scattering medium by means of its multispectral transmission matrix. Using a single spatial light modulator, our approach enables the full control of both the spatial and spectral properties of an ultrashort pulse transmitted through the medium. We demonstrate spatiotemporal focusing of the pulse at any arbitrary position and time with any desired spectral shape. Our approach opens new perspectives for fundamental studies of light-matter interaction in disordered media, and has potential applications in sensing, coherent control, and imaging.
Optics Letters | 2014
Hugo Defienne; Marco Barbieri; Benoît Chalopin; Béatrice Chatel; Ian A. Walmsley; Brian J. Smith; Sylvain Gigan
We investigate the possibility of using a scattering medium as a highly multimode platform for implementing quantum walks. We demonstrate the manipulation of a single photon propagating through a strongly scattering medium using wavefront-shaping technique. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a specific output mode. Using this approach, we show how entanglement of a single photon across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.We demonstrate the control of entanglement of a single photon between several spatial modes propagating through a strongly scattering medium. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a single or multi-mode output. Using this approach we show how entanglement across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.
Scientific Reports | 2018
Matthew Reichert; Hugo Defienne; Jason W. Fleischer
Entangled states of light are essential for quantum technologies and fundamental tests of physics. Current systems rely on entanglement in 2D degrees of freedom, e.g., polarization states. Increasing the dimensionality provides exponential speed-up of quantum computation, enhances the channel capacity and security of quantum communication protocols, and enables quantum imaging; unfortunately, characterizing high-dimensional entanglement of even bipartite quantum states remains prohibitively time-consuming. Here, we develop and experimentally demonstrate a new theory of camera detection that leverages the massive parallelization inherent in an array of pixels. We show that a megapixel array, for example, can measure a joint Hilbert space of 1012 dimensions, with a speed-up of nearly four orders-of-magnitude over traditional methods. The technique uses standard geometry with existing technology, thus removing barriers of entry to quantum imaging experiments, generalizes readily to arbitrary numbers of entangled photons, and opens previously inaccessible regimes of high-dimensional quantum optics.
Journal of Optics | 2017
Matthew Reichert; Hugo Defienne; Xiaohang Sun; Jason W. Fleischer
Losses should be accounted for in a complete description of quantum imaging systems, and yet they are often treated as undesirable and largely neglected. In conventional quantum imaging, images are built up by coincidence detection of spatially entangled photon pairs (biphotons) transmitted through an object. However, as real objects are non-unitary (absorptive), part of the transmitted state contains only a single photon, which is overlooked in traditional coincidence measurements. The single photon part has a drastically different spatial distribution than the two-photon part. It contains information both about the object, and, remarkably, the spatial entanglement properties of the incident biphotons. We image the one- and two-photon parts of the transmitted state using an electron multiplying CCD array both as a traditional camera and as a massively parallel coincidence counting apparatus, and demonstrate agreement with theoretical predictions. This work may prove useful for photon number imaging and lead to techniques for entanglement characterization that do not require coincidence measurements.
Physical Review A | 2016
Mickael Mounaix; Hugo Defienne; Sylvain Gigan
We report a method to characterize the propagation of an ultrashort pulse of light through a multiple scattering medium by measuring its time-resolved transmission matrix. This method is based on the use of a spatial light modulator together with a coherent time-gated detection of the transmitted speckle field. Using this matrix, we demonstrate the focusing of the scattered pulse at any arbitrary position in space and time after the medium. Our approach opens different perspectives for both fundamental studies and applications in imaging and coherent control in disordered media.
european quantum electronics conference | 2017
Michael Mounaix; Hugo Defienne; Daria Andreoli; Giorgio Volpe; Ori Katz; Samuel Gresillon; Sylvain Gigan
Optical imaging through complex media such as biological tissue or white paint remains a daily challenge as spatial information gets mixed because of multiple scattering. Without any ballistic light, common microscopy techniques become useless. Over the last decade, spatial light modulators (SLM) have become the indispensable tool to overcome scattering thanks to their millions of degrees of freedom. Wavefront shaping techniques have enabled the control of a transmitted or a reflected field scrambled after propagation, be it via optimization, digital optical phase conjugation or with the measurement of the optical transmission matrix [1]. However, most technique relies on the use monochromatic light.
Proceedings of SPIE | 2017
Mickael Mounaix; Hugo Defienne; Sylvain Gigan
When an ultrashort pulse of light propagates in a scattering medium, its spatial and temporal properties get mixed and distorted because of the scattering process. Spatially, the output pattern is the result of the multiple interference between the scattered photons. Temporally, light gets stretched within the medium due to its characteristic confinement time, thus the output pulse is broadened in the time domain. Nonetheless, as the scattering process is linear and deterministic, the spatio-temporal profile of light at the output can be controlled by shaping the input light using a single spatial light modulator (SLM). We report the first experimental measurement of the Time-Resolved Transmission Matrix of a multiple scattering medium using a coherent time-gated detection system. This operator contains the relationship between the input field, controllable with a SLM, and the output field accessible with a CCD camera for a given arrival time of photons at the output of medium. The delay line of the time-gated detection system sets the arrival time at will within the time of flight distribution of photons of the output pulse. We exploit this time-resolved matrix to achieve spatio-temporal focusing of the output pulse at any arbitrary space and time position. The pulse is recompressed in time to its original Fourier-limited temporal width and spatially to the diffraction-limited size defined by the speckle grain size. We also generate more sophisticated spatio-temporal profiles such as pump-probe like pulse, thus opening interesting perspectives in coherent control, light-matter interaction and imaging in disordered media.
Proceedings of SPIE | 2017
Matthew Reichert; Hugo Defienne; Xiaohang Sun; Jason W. Fleischer
We utilize a single-photon sensitive electron multiplying CCD camera as a massively parallel coincidence counting apparatus to study spatial entanglement of photon pairs. This allows rapid measurement of transverse spatial entanglement in a fraction of the time required with traditional point-scanning techniques. We apply this technique to quantum experiments on entangled photon pairs: characterization of the evolution of entanglement upon propagation, and measurement of one- and two-photon portions of the state transmitted through non-unitary (lossy) objects, and quantum phase imaging.
Frontiers in Optics | 2017
Matthew Reichert; Hugo Defienne; Jason W. Fleischer
We present the general SNR of coincidence measurements of joint probability of entangled-photon-pairs. Experiments with an EMCCD camera show excellent agreement for count rates up to saturation, and an optimum based on electronic noise.