Hugo F. Posada-Quintero
University of Connecticut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo F. Posada-Quintero.
IEEE Transactions on Biomedical Engineering | 2014
Bersain A. Reyes; Hugo F. Posada-Quintero; Justin R. Bales; Amanda L. Clement; George D. Pins; Albert Swiston; Jarno Riistama; John P. Florian; Barbara Shykoff; Michael Qin; Ki H. Chon
We have developed hydrophobic electrodes that provide all morphological waveforms without distortion of an ECG signal for both dry and water-immersed conditions. Our electrode is comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS). For feasibility testing of the CB/PDMS electrodes, various tests were performed. One of the tests included evaluation of the electrode-to-skin contact impedance for different diameters, thicknesses, and different pressure levels. As expected, the larger the diameter of the electrodes, the lower the impedance and the difference between the large sized CB/PDMS and the similarly-sized Ag/AgCl hydrogel electrodes was at most 200 kΩ, in favor of the latter. Performance comparison of CB/PDMS electrodes to Ag/AgCl hydrogel electrodes was carried out in three different scenarios: a dry surface, water immersion, and postwater immersion conditions. In the dry condition, no statistical differences were found for both the temporal and spectral indices of the heart rate variability analysis between the CB/PDMS and Ag/AgCl hydrogel (p > 0.05) electrodes. During water immersion, there was significant ECG amplitude reduction with CB/PDMS electrodes when compared to wet Ag/AgCl electrodes kept dry by their waterproof adhesive tape, but the reduction was not severe enough to obscure the readability of the recordings, and all morphological waveforms of the ECG signal were discernible even when motion artifacts were introduced. When water did not penetrate tape-wrapped Ag/AgCl electrodes, high fidelity ECG signals were observed. However, when water penetrated the Ag/AgCl electrodes, the signal quality degraded to the point where ECG morphological waveforms were not discernible.
Annals of Biomedical Engineering | 2015
Hugo F. Posada-Quintero; Bersain A. Reyes; Ken Burnham; John Pennace; Ki H. Chon
A novel electrocardiogram (ECG) electrode film is developed by mixing carbon black powder and a quaternary salt with a visco-elastic polymeric adhesive. Unlike traditional wet gel-based electrodes, carbon/salt/adhesive (CSA) electrodes should theoretically have an infinite shelf life as they do not dehydrate even after a prolonged period of storage. The CSA electrodes are electrically activated for use through the process of electrophoresis. Specifically, the activation procedure involves sending a high voltage and current through the electrode, which results in significant reduction of impedance so that high fidelity ECG signals can be obtained. Using the activation procedure, the ideal concentration of carbon black powder in the mixture with the adhesive was examined. It was determined that the optimum concentration of carbon black which minimized post-activation impedance was 10%. Once the optimal carbon black powder concentration was determined, extensive signal analysis was performed to compare the performance of the CSA electrodes to the standard silver–silver chloride (Ag/AgCl) electrodes. As a part of data analysis, electrode–skin contact impedance of the CSA was measured and compared to the standard Ag/AgCl electrodes; we found consistently lower impedance for CSA electrodes. For quantitative data analysis, we simultaneously collected ECG data with CSA and Ag/AgCl electrodes from 17 healthy subjects. Heart rate variability (HRV) indices and ECG morphological waveforms were calculated to compare CSA and Ag/AgCl electrodes. Non-significant differences for most of the HRV indices between CSA and Ag/AgCl electrodes were found. Of the morphological waveform metrics consisting of R-wave peak amplitude, ST-segment elevation and QT interval, only the first index was found to be significantly different between the two media. The response of CSA electrodes to motion artifacts was also tested, and we found in general no difference in the quality of the ECG signal between the two media. Hence, given that CSA electrodes are expected to have a very long shelf-life, with potentially less cost associated with their fabrication, and have ECG signal dynamics nearly identical to those of Ag/AgCl, the new electrodes provide an attractive alternative for ECG measurements.
Journal of diabetes science and technology | 2014
Ki H. Chon; Bufan Yang; Hugo F. Posada-Quintero; Kin Lung Siu; Marsha W. Rolle; Peter R. Brink; Aija Birzgalis; Leon C. Moore
Background: In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. Method: HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. Results: The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Conclusions: Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction.
IEEE Journal of Translational Engineering in Health and Medicine | 2016
Hugo F. Posada-Quintero; Ryan Rood; Ken Burnham; John Pennace; Ki H. Chon
This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon’s Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz–2 kHz, no significant differences were found in the signals’ amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = −0.02, variance = 0.11; OFF-time: bias = −0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative to Ag/AgCl electrodes for sEMG measurements.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016
Hugo F. Posada-Quintero; John P. Florian; Alvaro D. Orjuela-Cañón; Ki H. Chon
Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youdens index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability.
international conference of the ieee engineering in medicine and biology society | 2014
Bersain A. Reyes; Hugo F. Posada-Quintero; Justin R. Bales; Ki H. Chon
Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (p<;0.05) was only found during the immersed condition with CB/PDMS electrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.
Sensors | 2018
Hugo F. Posada-Quintero; Natasa Reljin; Caitlin Eaton-Robb; Yeon-Sik Noh; Jarno Riistama; Ki H. Chon
The detection of intrathoracic volume retention could be crucial to the early detection of decompensated heart failure (HF). Transthoracic Bioimpedance (TBI) measurement is an indirect, promising approach to assessing intrathoracic fluid volume. Gel-based adhesive electrodes can produce skin irritation, as the patient needs to place them daily in the same spots. Textile electrodes can reduce skin irritation; however, they inconveniently require wetting before each use and provide poor adherence to the skin. Previously, we developed waterproof reusable dry carbon black polydimethylsiloxane (CB/PDMS) electrodes that exhibited a good response to motion artifacts. We examined whether these CB/PDMS electrodes were suitable sensing components to be embedded into a monitoring vest for measuring TBI and the electrocardiogram (ECG). We recruited N = 20 subjects to collect TBI and ECG data. The TBI parameters were different between the various types of electrodes. Inter-subject variability for copper-mesh CB/PDMS electrodes and Ag/AgCl electrodes was lower compared to textile electrodes, and the intra-subject variability was similar between the copper-mesh CB/PDMS and Ag/AgCl. We concluded that the copper mesh CB/PDMS (CM/CB/PDMS) electrodes are a suitable alternative for textile electrodes for TBI measurements, but with the benefit of better skin adherence and without the requirement of wetting the electrodes, which can often be forgotten by the stressed HF subjects.
PLOS ONE | 2018
Hugo F. Posada-Quintero; Natasa Reljin; Craig Mills; Ian G. Mills; John P. Florian; Jaci L. VanHeest; Ki H. Chon
The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects’ instantaneous heart rate, which was used to set the experiment’s end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity.
Archive | 2018
Alvaro D. Orjuela-Cañón; Hugo F. Posada-Quintero; Cesar Hernando Valencia; Leonardo Mendoza
Artificial neural networks are being used in diagnosis support systems to detect different kind of diseases. As the design of multilayer perceptron is an open question, the present work shows a comparison between a traditional empirical way and neuroevolution method to find the best architecture to solve the disease detection problem. Tuberculosis and appendicitis databases were employed to test both proposals. Results show that neuroevolution offers a good alternative for the tuberculosis problem but there is lacks of performance in the appendicitis one.
Human Factors | 2018
Hugo F. Posada-Quintero; Jeffrey B. Bolkhovsky; Michael Qin; Ki H. Chon
Objective: The aim was to determine if indices of the autonomic nervous system (ANS), derived from the electrodermal activity (EDA) and electrocardiogram (ECG), could be used to detect deterioration in human cognitive performance on healthy participants during 24-hour sleep deprivation. Background: The ANS is highly sensitive to sleep deprivation. Methods: Twenty-five participants performed a desktop-computer-based version of the psychomotor vigilance task (PVT) every 2 hours. Simultaneously with reaction time (RT) and false starts from PVT, we measured EDA and ECG. We derived heart rate variability (HRV) measures from ECG recordings to assess dynamics of the ANS. Based on RT values, average reaction time (avRT), minor lapses (RT > 500 ms), and major lapses (RT > 1 s) were computed as indices of performance, along with the total number of false starts. Results: Performance measurement results were consistent with the literature. The skin conductance level, the power spectral index, and the high-frequency components of HRV were not significantly correlated to the indices of performance. The nonspecific skin conductance responses, the time-varying index of EDA (TVSymp), and normalized low-frequency components of HRV were significantly correlated to indices of performance (p < 0.05). TVSymp exhibited the highest correlation to avRT (–0.92), major lapses (–0.85), and minor lapses (–0.83). Conclusion: We conclude that indices that account for high-frequency dynamics in the EDA, specifically the time-varying approach, constitute a valuable tool for understanding the changes in the autonomic nervous system. Application: This can be used to detect the adverse effects of prolonged wakefulness on human performance.