Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo M. Oliveira is active.

Publication


Featured researches published by Hugo M. Oliveira.


Journal of Controlled Release | 2010

Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells

José L. Santos; Hugo M. Oliveira; Deepti Pandita; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás

A new family of gene delivery vectors is synthesized consisting of a medium-size generation PAMAM dendrimer (generation 5, with amine termini) core randomly linked at the periphery to hydrophobic chains that vary in length (12 to 16 carbon alkyl chains) and number (from 4.2 to 9.7 in average). The idea subjacent to the present work is to join the advantages of the cationic nature of the dendrimer with the capacity of lipids to interact with biological membranes. Unlike other amphiphilic systems designed for the same purpose, where the hydrophobic and hydrophilic moieties coexist in opposite sides, the present vectors have a hydrophilic interior and a hydrophobic corona. The vectors are characterized in respect to their ability to neutralize, bind and compact plasmid DNA (pDNA). The complexes formed between the vectors and pDNA are analyzed concerning their size, zeta-potential, resistance to serum nucleases, capacity of being internalized by cells and transfection efficiency. These new vectors show a remarkable capacity for mediating the internalization of pDNA with minimum cytotoxicity, being this effect positively correlated with the -CH(2)- content present in the hydrophobic corona. Gene expression in MSCs, a cell type with relevancy in the regenerative medicine clinical context, is also enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains.


Acta Biomaterialia | 2009

Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone

C. Moreira; Hugo M. Oliveira; Liliana R. Pires; Sérgio Simões; Mário A. Barbosa; Ana Paula Pêgo

Chitosan was functionalized with imidazole moieties (CHimi) with the aim of improving its buffering capacity and promoting the endosomal escape ability of chitosan-DNA complexes, ultimately increasing their transfection efficiency. 5.6%, 12.9% and 22.1% of the glucosamine residues of chitosan were substituted. Complexes with different molar ratios of primary amines to DNA phosphate anion (N/P) were prepared by a coacervation method. For an N/P>3, CHimi polymers are able to complex electrostatically with DNA and condense it into positively charged nanostructures (average size 260 nm and zeta potential +16 mV at pH 5.5). In the concentration range 2.5-100 microg ml(-1), the modified polymers had no cytotoxic effect on 293T cells. CHimi polymers with the highest degree of substitution were found to enhance beta-gal expression in 293T and HepG2 cells. Bafilomycin A1 inhibited transfection, indicating that the protonation of the imidazole groups in the endolysosome pathway favors the escape of the complexes from the endosomes, increasing the amount of transgene that can reach the cell nucleus.


Nano Letters | 2010

Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth.

Ursula Mittnacht; Hanna Hartmann; San Hein; Hugo M. Oliveira; Mingdong Dong; Ana Paula Pêgo; Jørgen Kjems; Kenneth A. Howard; Burkhard Schlosshauer

Microstructured 20 μm thick polymer filaments used as nerve implants were loaded with chitosan/siRNA nanoparticles to promote nerve regeneration and ensure local delivery of nanotherapeutics. The stable nanoparticles were rapidly internalized by cells and did not affect cell viability. Target mRNA was successfully reduced by 65-75% and neurite outgrowth was enhanced even in an inhibitory environment. This work, thus, supports the application of nanobiofunctionalized implants as a novel approach for spinal cord and nerve repair.


Planta | 2006

Expression of arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana.

Luís Gustavo Pereira; Sílvia Coimbra; Hugo M. Oliveira; Lionel Monteiro; Mariana Sottomayor

The expression of “classical” arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana was characterized by RT-PCR. Transcripts of Agp6 and Agp11 were consistently found to be more abundant in pollen tubes and seem to be pollen-specific. Transcripts of other AGP genes were also detected in pollen but in lesser amounts and in a non-specific fashion. Two reference genes, ubiquitin-conjugating enzyme 9 and tubulin beta-4 chain, were evaluated and selected for gene expression studies in pollen. Expression characterization was complemented with immunolocalization studies using monoclonal antibodies specific to several glycosidic epitopes of AGPs. These studies were performed on in vitro germinated pollen tubes with the antibodies MAC207 and LM2. MAC207 produced labelling at the tip of the pollen tube, while LM2 produced a ring-like fluorescence around the emerging region of the tube, suggesting a role of AGPs during Arabidopsis pollen tube germination. To our knowledge, this is the first report establishing the presence of AGPs on Arabidopsis pollen tubes.


Journal of Controlled Release | 2010

Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c.

Hugo M. Oliveira; Ramon Fernandez; Liliana R. Pires; M. Cristina L. Martins; Sérgio Simões; Mário A. Barbosa; Ana Paula Pêgo

A simple, safe and efficient system that can specifically transfect peripheral sensorial neurons can bring new answers to address peripheral neuropathies. A multi-component non-viral gene delivery vector targeted to peripheral nervous system cells was developed, using poly(ethylene imine) (PEI) as starting material. A binary DNA/polymer complex based on thiolated PEI (PEISH) was optimized, considering complex size and zeta potential and the ability to transfect a sensorial neuron cell line (ND7/23). The 50 kDa non-toxic fragment from tetanus toxin (HC), which has been previously shown to interact specifically with peripheral neurons and to undergo retrograde transport, was grafted to the complex core via a bifunctional PEG (HC-PEG) reactive for the thiol moieties present in the complex surface. Several formulations of HC-PEG ternary complexes were tested for targeting, by assessing the extent of cellular internalization and levels of transfection, in both the ND7/23 and NIH 3 T3 (fibroblast) cell lines. Targeted gene transfer to the neuronal cell line was observed for the complex formulations containing 5 and 7.5 microg of HC-PEG. Finally, our results demonstrate that the developed ternary vectors are able to transfect primary cultures of dorsal root ganglion dissociated neurons in a targeted manner and elicit the expression of a relevant neurotrophic factor.


Journal of Chromatography A | 2010

On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach

Hugo M. Oliveira; Marcela A. Segundo; José L. F. C. Lima; Manuel Miró; Víctor Cerdà

For the first time, an automatic sample pre-treatment/detection method is proposed for the multiclass determination of UV filters (namely, benzophenone-3, ethylhexylmetoxycinnamate, butylmethoxydibenzoylmethane and homosalate) in environmental samples. The new methodology comprises in-line solid-phase extraction (SPE) of the target analytes by exploiting the bead injection (BI) concept in a mesofluidic lab-on-valve (LOV) format, with subsequent determination by liquid chromatography (LC). The proposed microanalytical system, using a multisyringe burette as propulsion unit, automatically performed the overall SPE steps, including the renewal of the sorbent in each analytical cycle to prevent sample cross-contamination and the post-extraction adjustment of the eluate composition to prevent chromatographic band broadening effects. In order to expedite the LC separation, a C(18) monolithic column was applied and an accelerated isocratic elution was carried out by using a cationic surfactant as mobile phase additive. The LOV-BI-LC method was proven reliable for handling and analysis of complex matrices, e.g., spiked swimming pool water and seawater, with limits of detection ranging between 0.45 and 3.2 microg L(-1) for 9 mL sample volume. Linear calibration was attained up to 160 microg L(-1) for homosalate and up to 35 microg L(-1) for the other target analytes, with good reproducibility (RSD<13%, for 5 different SPE columns). The hyphenated scheme is able to process a given sample simultaneously and within the same time frame than the chromatographic separation/determination of the formerly pre-treated sample, providing concentration values every 9 min. Hence, the sample throughput was enhanced up to 33 times when compared with previously reported off-line SPE methods. A drastic reduction in reagent consumption and effluent production was also attained, contributing to the development of an environment-friendly analyzer.


Talanta | 2009

Multisyringe flow injection system for solid-phase extraction coupled to liquid chromatography using monolithic column for screening of phenolic pollutants

Hugo M. Oliveira; Marcela A. Segundo; José L. F. C. Lima; Víctor Cerdà

In this work a fast, automatic solid-phase extraction procedure hyphenated to HPLC-UV is proposed for screening of priority phenolic pollutants in waters at ng mL(-1) levels. A flow through column, containing polystyrene-divinylbenzene sorbent, was incorporated to a multisyringe flow injection system (MSFIA), where the sample loading and analyte elution were carried out after computer control. The MSFIA system also directed the eluent to fill the injection loop of the chromatograph, coupling the sample preparation to its determination. High enrichment factors were attained for phenol and ten of its derivatives (mean value 176 for 50 mL of sample), with LOD values lower than 1 ng mL(-1) for the maximum volume of sample used (100mL). For all analytes, mean recoveries between 89 and 103% were obtained for different water matrices. Certified reference material and a contaminated soil (RTC-CRM 112) were also tested successfully. The determination frequency was 4-10h(-1), providing an automatic, fast and reliable tool for water quality and environmental monitoring.


Journal of Biomedical Materials Research Part A | 2010

Chitosan-based gene delivery vectors targeted to the peripheral nervous system.

Hugo M. Oliveira; Liliana R. Pires; Ramon Fernandez; M. Cristina L. Martins; Sérgio Simões; Ana Paula Pêgo

A non-toxic, targeted, simple and efficient system that can specifically transfect peripheral sensorial neurons can pave the way towards the development of new therapeutics for the treatment of peripheral neuropathies. In this study chitosan (CH), a biodegradable polymer, was used as the starting material in the design of a multicomponent vector targeted to the peripheral nervous system (PNS). Polycation-DNA complexes were optimized using imidazole- and thiol-grafted CH (CHimiSH), in order to increase transfection efficiency and allow the formation of ligand conjugated nanocomplexes, respectively. The 50 kDa non-toxic fragment from the tetanus toxin (HC), shown to interact specifically with peripheral neurons and undergo retrograde transport, was grafted to the binary complex via a bi-functional poly(ethylene glycol) (HC-PEG) reactive for the thiol moieties present in the complex surface. The targeting of the developed nanocomplexes was assessed by means of internalization and transfection studies in the ND7/23 (neuronal) vs. NIH 3T3 (fibroblast) cell lines. Targeted transfection was further confirmed in dorsal root ganglion dissociated primary cultures. A versatile, multi-component nanoparticle system that successfully targets and transfects neuronal cell lines, as well as dorsal root ganglia (DRG) primary neuron cultures was obtained for the 1.0 (w/w) HC-PEG/DNA formulation.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Imidazole-grafted chitosan-mediated gene delivery: in vitro study on transfection, intracellular trafficking and degradation.

Liliana R. Pires; Hugo M. Oliveira; Cristina C. Barrias; Paula Sampaio; António J. Pereira; Helder Maiato; Sérgio Simões; Ana Paula Pêgo

AIM To study the mechanism of transfection mediated by imidazole-grafted chitosan (CHimi) nanoparticles, to propose new strategies to control and improve the expression of a delivered gene in the context of regenerative medicine. METHODS Biochemical and microscopy methods were used to establish transfection efficiency and nanoparticle intracellular trafficking. The role of CHimi and degree of N-acetylation (DA) on transfection was explored. RESULTS CHimi was found to promote the expression of a delivered gene during a minimum 7-day period. Additionally, the production of a protein of interest could be upheld by consecutive transfections, without compromising cell viability. Transfection was found to be a time-dependent process, requiring CHimi-DNA complex disassembling. The DA was found to have an impact on transfection kinetics in line with the observation that the rate of lysozyme-mediated nanoparticle degradation increases with the polymer DA. CONCLUSION The adjustment of the CH degradation rate can be used as a tool for tuning the expression of a gene delivered by CH-based nanoparticle systems.


Analyst | 2011

Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection

Maxime M. Grand; Hugo M. Oliveira; Jaromir (Jarda) Ruzicka; Christopher I. Measures

This paper introduces the preliminary design and optimization of a micro-Sequential Injection lab-on-valve system (μSI-LOV) with fluorescence detection for the direct determination of trace Zn(2+) in an unacidified seawater matrix. The method capitalizes on the sensitivity and selectivity of FluoZin-3, which was originally designed to measure zinc in living cells. The optimum reaction conditions, sources of blank signal and physical parameters of the μSIA-LOV are evaluated with the requirements of trace metal analysis in mind, namely high sensitivity and low background signals. A detailed investigation of the effect of sample and reagent sequencing on sensitivity is presented for the first time using μSIA-LOV. We find that the order of sequencing greatly influences peak shape and analytical sensitivity with the highest and smoothest peaks obtained when a large volume of sample (75 μL) is aspirated last in the sequence prior to flow reversal and detection. The optimized reaction conditions and reagent/sample sequencing protocol yield a detection limit of 0.3 nM Zn(2+), high precision (RSD < 2.5%), a linear quantification range up to 40 nM and an analytical cycle of ∼1 min per sample. This work demonstrates that μSI-LOV is capable of attaining detection limits that are close to those needed for open ocean determinations of Zn(2+) without preconcentration or separation of the analyte from the seawater matrix. The low reagent consumption (50 μL per sample), full automation and minimal maintenance requirements of μSI-LOV make it well suited for shipboard analysis and, eventually, for development to meet the pressing need for trace element measurements in unattended locations.

Collaboration


Dive into the Hugo M. Oliveira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Miró

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

Víctor Cerdà

University of the Balearic Islands

View shared research outputs
Researchain Logo
Decentralizing Knowledge