Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo Osório is active.

Publication


Featured researches published by Hugo Osório.


Journal of Clinical Pathology | 2010

Alterations in glycosylation as biomarkers for cancer detection

Celso A. Reis; Hugo Osório; Luísa Silva; Catarina Gomes; Leonor David

Glycoconjugates constitute a major class of biomolecules which include glycoproteins, glycosphingolipids and proteoglycans. Glycans are involved in several physiological and pathological conditions, such as host–pathogen interactions, cell differentiation, migration, tumour invasion and metastisation, cell trafficking and signalling. Cancer is associated with glycosylation alterations in glycoproteins and glycolipids. This review describes various aspects of protein glycosylation with the focus on alterations associated with human cancer. The application of these glycosylation modifications as biomarkers for cancer detection in tumour tissues and serological assays is summarised.


Journal of Agricultural and Food Chemistry | 2011

Reactivity of human salivary proteins families toward food polyphenols.

Susana Soares; Rui Vitorino; Hugo Osório; Ana Fernandes; Armando Venâncio; Nuno Mateus; Francisco Amado; Victor de Freitas

Tannins are well-known food polyphenols that interact with proteins, namely, salivary proteins. This interaction is an important factor in relation to their bioavailability and is considered the basis of several important properties of tannins, namely, the development of astringency. It has been generally accepted that astringency is due to the tannin-induced complexation and/or precipitation of salivary proline-rich proteins (PRPs) in the oral cavity. However, this complexation is thought to provide protection against dietary tannins. Neverthless, there is no concrete evidence and agreement about which PRP families (acidic, basic, and glycosylated) are responsible for the interaction with condensed tannins. In the present work, human saliva was isolated, and the proteins existing in saliva were characterized by chromatographic and proteomic approaches (HPLC-DAD, ESI-MS, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and MALDI-TOF). These approaches were also adapted to study the affinity of the different families of salivary proteins to condensed tannins by the interaction of saliva with grape seed procyanidins. The results obtained when all the main families of salivary proteins are present in a competitive assay, like in the oral cavity, demonstrate that condensed tannins interact first with acidic PRPs and statherin and thereafter with histatins, glycosylated PRPs, and bPRPs.


Glycobiology | 2009

Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa

Ana Magalhães; Joana Gomes; Mohd Nazri Ismail; Stuart M. Haslam; Nuno Mendes; Hugo Osório; Leonor David; Jacques Le Pendu; Rainer Haas; Anne Dell; Thomas Borén; Celso A. Reis

Glycoconjugates expressed on gastric mucosa play a crucial role in host-pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal alpha(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the worlds population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Le(b) and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of alpha(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucalpha(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected.


Biochemical and Biophysical Research Communications | 2009

Role of E-cadherin N-glycosylation profile in a mammary tumor model.

Salomé S. Pinho; Hugo Osório; Mihai Nita-Lazar; Joana Gomes; Célia Lopes; Fátima Gärtner; Celso A. Reis

Modifications in cell surface glycosylation affecting cell adhesion are common characteristics of transformed cells. This study characterizes the N-glycosylation profile of E-cadherin in models of canine mammary gland adenoma and carcinoma evaluating the importance of these glycosylation modifications in the malignant phenotype. Our results show that the pattern of E-cadherin N-glycosylation in mammary carcinoma is characterized by highly branched N-glycans, increase in sialylation and an expression of few high mannose structures. Detailed mass spectrometry analysis demonstrated a new N-glycosylation site containing a potential complex type N-glycan in E-cadherin from a mammary carcinoma cell line. Our study demonstrates the importance of E-cadherin N-glycans in the process of tumor development and in the transformation to the malignant phenotype.


Journal of Proteome Research | 2013

Glycoproteomic Analysis of Serum from Patients with Gastric Precancerous Lesions

Catarina Gomes; Andreia Almeida; José Alexandre Ferreira; Luísa Silva; Hugo Santos-Sousa; João Pinto-de-Sousa; Lúcio Lara Santos; Francisco Amado; Tilo Schwientek; Steven B. Levery; Ulla Mandel; Henrik Clausen; Leonor David; Celso A. Reis; Hugo Osório

Gastric cancer is preceded by a carcinogenesis pathway that includes gastritis caused by Helicobacter pylori infection, chronic atrophic gastritis that may progress to intestinal metaplasia (IM), dysplasia, and ultimately gastric carcinoma of the more common intestinal subtype. The identification of glycosylation changes in circulating serum proteins in patients with precursor lesions of gastric cancer is of high interest and represents a source of putative new biomarkers for early diagnosis and intervention. This study applies a glycoproteomic approach to identify altered glycoproteins expressing the simple mucin-type carbohydrate antigens T and STn in the serum of patients with gastritis, IM (complete and incomplete subtypes), and control healthy individuals. The immunohistochemistry analysis of the gastric mucosa of these patients showed expression of T and STn antigens in gastric lesions, with STn being expressed only in IM. The serum glycoproteomic analysis using 2D-gel electrophoresis, Western blot, and MALDI-TOF/TOF mass spectrometry led to the identification of circulating proteins carrying these altered glycans. One of the glycoproteins identified was plasminogen, a protein that has been reported to play a role in H. pylori chronic infection of the gastric mucosa and is involved in extracellular matrix modeling and degradation. Plasminogen was further characterized and showed to carry STn antigens in patients with gastritis and IM. These results provide evidence of serum proteins displaying abnormal O-glycosylation in patients with precursor lesions of gastric carcinoma and include a panel of putative targets for the non-invasive clinical diagnosis of individuals with gastritis and IM.


Journal of Neurology, Neurosurgery, and Psychiatry | 2015

CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings

Luis F. Maia; Rui Magalhães; Joel Freitas; Ricardo Taipa; Manuel Melo Pires; Hugo Osório; Daniel Dias; Helena Pessegueiro; Manuel Correia; Teresa Coelho

Objectives Since liver transplant (LT) was introduced to treat patients with familial amyloid polyneuropathy carrying the V30M mutation (ATTR-V30M), ocular and cardiac complications have developed. Long-term central nervous system (CNS) involvement was not investigated. Our goals were to: (1) identify and characterise focal neurological episodes (FNEs) due to CNS dysfunction in ATTR-V30M patients; (2) characterise neuropathological features and temporal profile of CNS transthyretin amyloidosis. Methods We monitored the presence and type of FNEs in 87 consecutive ATTR-V30M and 35 non-ATTR LT patients. FNEs were investigated with CT scan, EEG and extensive neurovascular workup. MRI studies were not performed because all patients had cardiac pacemakers as part of the LT protocol. We characterised transthyretin amyloid deposition in the brains of seven ATTR-V30M patients, dead 3–13 years after polyneuropathy onset. Results FNEs occurred in 31% (27/87) of ATTR-V30M and in 5.7% (2/35) of the non-ATTR transplanted patients (OR=7.0, 95% CI 1.5 to 33.5). FNEs occurred on average 14.6 years after disease onset (95% CI 13.3 to 16.0) in ATTR-V30M patients, which is beyond the life expectancy of non-transplanted ATTR-V30M patients (10.9, 95% CI 10.5 to 11.3). ATTR-V30M patients with FNEs had longer disease duration (OR=1.24; 95% CI 1.07 to 1.43), renal dysfunction (OR=4.65; 95% CI 1.20 to 18.05) and were men (OR=3.57; 95% CI 1.02 to 12.30). CNS transthyretin amyloidosis was already present 3 years after polyneuropathy onset and progressed from the meninges and its vessels towards meningocortical vessels and the superficial brain parenchyma, as disease duration increased. Conclusions Our findings indicate that CNS clinical involvement occurs in ATTR-V30M patients regardless of LT. Longer disease duration after LT can provide the necessary time for transthyretin amyloidosis to progress until it becomes clinically relevant. Highly sensitive imaging methods are needed to identify and monitor brain ATTR. Disease modifying therapies should consider brain TTR as a target.


PLOS ONE | 2013

Expression of ST3GAL4 Leads to SLex Expression and Induces c-Met Activation and an Invasive Phenotype in Gastric Carcinoma Cells

Catarina Gomes; Hugo Osório; Marta T. Pinto; Diana Campos; Maria José Oliveira; Celso A. Reis

Sialyl-Lewis X (SLex) is a sialylated glycan antigen expressed on the cell surface during malignant cell transformation and is associated with cancer progression and poor prognosis. The increased expression of sialylated glycans is associated with alterations in the expression of sialyltransferases (STs). In this study we determined the capacity of ST3GAL3 and ST3GAL4 sialyltransferases to synthesize the SLex antigen in MKN45 gastric carcinoma cells and evaluated the effect of SLex overexpression in cancer cell behavior both in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. The activation of tyrosine kinase receptors and their downstream molecular targets was also addressed. Our results showed that the expression of ST3GAL4 in MKN45 gastric cancer cells leads to the synthesis of SLex antigens and to an increased invasive phenotype both in vitro and in the in vivo CAM model. Analysis of phosphorylation of tyrosine kinase receptors showed a specific increase in c-Met activation. The characterization of downstream molecular targets of c-Met activation, involved in the invasive phenotype, revealed increased phosphorylation of FAK and Src proteins and activation of Cdc42, Rac1 and RhoA GTPases. Inhibition of c-Met and Src activation abolished the observed increased cell invasive phenotype. In conclusion, the expression of ST3GAL4 leads to SLex antigen expression in gastric cancer cells which in turn induces an increased invasive phenotype through the activation of c-Met, in association with Src, FAK and Cdc42, Rac1 and RhoA GTPases activation.


Molecular Microbiology | 2011

Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells

António Daniel Barbosa; Hugo Osório; Kellie J. Sims; Teresa Almeida; Mariana Alves; Jacek Bielawski; Maria Amélia Amorim; Pedro Moradas-Ferreira; Yusuf A. Hannun; Vitor Santos Costa

Saccharomyces cerevisiae cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase 2, display a shortened lifespan and an increased sensitivity to oxidative stress. A lipidomic analysis revealed specific changes in sphingolipids that accompanied the premature ageing of Isc1p‐deficient cells under severe calorie restriction conditions, including a decrease of dihydrosphingosine levels and an increase of dihydro‐C26‐ceramide and phyto‐C26‐ceramide levels, the latter raising the possibility of activation of ceramide‐dependent protein phosphatases. Consequently, deletion of the SIT4 gene, which encodes for the catalytic subunit of type 2A ceramide‐activated protein phosphatase in yeast, abolished the premature ageing and hydrogen peroxide sensitivity of isc1Δ cells. SIT4 deletion also abolished the respiratory defects and catalase A deficiency exhibited by isc1Δ mutants. These results are consistent with catabolic derepression associated with the loss of Sit4p. The overall results show that Isc1p is an upstream regulator of Sit4p and implicate Sit4p activation in mitochondrial dysfunction leading to the shortened chronological lifespan and oxidative stress sensitivity of isc1Δ mutants.


British Journal of Cancer | 2013

Autoantibodies to MUC1 glycopeptides cannot be used as a screening assay for early detection of breast, ovarian, lung or pancreatic cancer.

Brian Burford; A Gentry-Maharaj; Rosalind Graham; Diane S. Allen; Johannes W. Pedersen; A S Nudelman; Ola Blixt; Evangelia-Ourania Fourkala; D Bueti; Anne Dawnay; Jeremy Ford; R Desai; Leonor David; P Trinder; Bruce Acres; T Schwientek; Alexander Gammerman; Celso A. Reis; Luis F. Santos Silva; Hugo Osório; Rachel Hallett; Hans H. Wandall; Ulla Mandel; Michael A. Hollingsworth; Ian Jacobs; Ian S. Fentiman; Henrik Clausen; Joyce Taylor-Papadimitriou; Usha Menon; Joy Burchell

Background:Autoantibodies have been detected in sera before diagnosis of cancer leading to interest in their potential as screening/early detection biomarkers. As we have found autoantibodies to MUC1 glycopeptides to be elevated in early-stage breast cancer patients, in this study we analysed these autoantibodies in large population cohorts of sera taken before cancer diagnosis.Methods:Serum samples from women who subsequently developed breast cancer, and aged-matched controls, were identified from UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and Guernsey serum banks to formed discovery and validation sets. These were screened on a microarray platform of 60mer MUC1 glycopeptides and recombinant MUC1 containing 16 tandem repeats. Additional case–control sets comprised of women who subsequently developed ovarian, pancreatic and lung cancer were also screened on the arrays.Results:In the discovery (273 cases, 273 controls) and the two validation sets (UKCTOCS 426 cases, 426 controls; Guernsey 303 cases and 606 controls), no differences were found in autoantibody reactivity to MUC1 tandem repeat peptide or glycoforms between cases and controls. Furthermore, no differences were observed between ovarian, pancreatic and lung cancer cases and controls.Conclusion:This robust, validated study shows autoantibodies to MUC1 peptide or glycopeptides cannot be used for breast, ovarian, lung or pancreatic cancer screening. This has significant implications for research on the use of MUC1 in cancer detection.


Nature Cell Biology | 2018

Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation

Haiying Zhang; Daniela Freitas; Han Sang Kim; Kristina Fabijanic; Zhong Li; Haiyan Chen; Milica Tesic Mark; Henrik Molina; Alberto Martín; Linda Bojmar; Justin Fang; Sham Rampersaud; Ayuko Hoshino; Irina Matei; Candia M. Kenific; Miho Nakajima; Anders Peter Mutvei; Pasquale Sansone; Weston Buehring; Huajuan Wang; Juan Pablo Jimenez; Leona Cohen-Gould; Navid Paknejad; Matthew Brendel; Katia Manova-Todorova; Ana Magalhães; José J.A. Ferreira; Hugo Osório; André M. N. Silva; Ashish Massey

The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nm; small exosome vesicles, Exo-S, 60–80 nm) and discovered an abundant population of non-membranous nanoparticles termed ‘exomeres’ (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.Lyden and colleagues use asymmetric flow field-flow fractionation to classify nanoparticles derived from cell lines and human samples, including previously uncharacterized large, Exo-L and small, Exo-S, exosome subsets.

Collaboration


Dive into the Hugo Osório's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Sillero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María A. Günther Sillero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge