Hugo Varet
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo Varet.
PLOS ONE | 2016
Hugo Varet; Loraine Brillet-Guéguen; Jean-Yves Coppée; Marie-Agnès Dillies
Background Several R packages exist for the detection of differentially expressed genes from RNA-Seq data. The analysis process includes three main steps, namely normalization, dispersion estimation and test for differential expression. Quality control steps along this process are recommended but not mandatory, and failing to check the characteristics of the dataset may lead to spurious results. In addition, normalization methods and statistical models are not exchangeable across the packages without adequate transformations the users are often not aware of. Thus, dedicated analysis pipelines are needed to include systematic quality control steps and prevent errors from misusing the proposed methods. Results SARTools is an R pipeline for differential analysis of RNA-Seq count data. It can handle designs involving two or more conditions of a single biological factor with or without a blocking factor (such as a batch effect or a sample pairing). It is based on DESeq2 and edgeR and is composed of an R package and two R script templates (for DESeq2 and edgeR respectively). Tuning a small number of parameters and executing one of the R scripts, users have access to the full results of the analysis, including lists of differentially expressed genes and a HTML report that (i) displays diagnostic plots for quality control and model hypotheses checking and (ii) keeps track of the whole analysis process, parameter values and versions of the R packages used. Conclusions SARTools provides systematic quality controls of the dataset as well as diagnostic plots that help to tune the model parameters. It gives access to the main parameters of DESeq2 and edgeR and prevents untrained users from misusing some functionalities of both packages. By keeping track of all the parameters of the analysis process it fits the requirements of reproducible research.
Scientific Reports | 2016
Christian Weber; Mikael Koutero; Marie-Agnès Dillies; Hugo Varet; César López-Camarillo; Jean Yves Coppée; Chung-Chau Hon; Nancy Guillén
Amoebiasis is a human infectious disease due to the amoeba parasite Entamoeba histolytica. The disease appears in only 20% of the infections. Diversity in phenotypes may occur within the same infectious strain in the gut; for instance, parasites can be commensal (in the intestinal lumen) or pathogenic (inside the tissue). The degree of pathogenesis of clinical isolates varies greatly. These findings raise the hypothesis that genetic derivation may account for amoebic diverse phenotypes. The main goal of this study was to analyse gene expression changes of a single virulent amoebic strain in different environmental contexts where it exhibit different degrees of virulence, namely isolated from humans and maintained through animal liver passages, in contact with the human colon and short or prolonged in vitro culture. The study reveals major transcriptome changes in virulent parasites upon contact with human colon explants, including genes related to sugar metabolism, cytoskeleton rearrangement, stress responses and DNA repair. Furthermore, in long-term cultured parasites, drastic changes in gene expression for proteins with functions for proteasome and tRNA activities were found. Globally we conclude that rapid changes in gene expression rather than genetic derivation can sustain the invasive phenotype of a single virulent isolate of E. histolytica.
PLOS ONE | 2015
Viviane Balloy; Hugo Varet; Marie-Agnès Dillies; Caroline Proux; Bernd Jagla; Jean-Yves Coppée; Olivier Tabary; Harriet Corvol; Loïc Guillot
Background and Aims In cystic fibrosis (CF), Pseudomonas aeruginosa is not eradicated from the lower respiratory tract and is associated with epithelial inflammation that eventually causes tissue damage. To identify the molecular determinants of an effective response to P. aeruginosa infection, we performed a transcriptomic analysis of primary human bronchial epithelial cells from healthy donors (CTRL) 2, 4, and 6 h after induced P. aeruginosa infection. Compared to noninfected cells, infected cells showed changes in gene activity, which were most marked 6 h postinfection and usually consisted in upregulation. Results By comparing for each time point of infection, the transcriptomic response of epithelial cells from CF patients and healthy donors, we identified 851, 638, 667, and 980 differentially expressed genes 0, 2, 4, and 6 h postinfection, respectively. Gene selection followed by bioinformatic analysis showed that most of the differentially expressed genes, either up- or downregulated, were in the protein-binding and catalytic gene-ontology categories. Finally, we established that the protein products of the genes exhibiting the greatest differential upregulation (CSF2, CCL2, TNF, CSF3, MMP1, and MMP10) between CF patients and CTRL were produced in higher amounts by infected cells from CF patients versus CTRL. Conclusions The differentially expressed genes in CF patients may constitute a signature for a detrimental inflammatory response and for an inefficient P. aeruginosa host-cell response.
Nature Communications | 2018
Lun Cui; Antoine Vigouroux; François Rousset; Hugo Varet; Varun Khanna; David Bikard
High-throughput CRISPR-Cas9 screens have recently emerged as powerful tools to decipher gene functions and genetic interactions. Here we use a genome-wide library of guide RNAs to direct the catalytically dead Cas9 (dCas9) to block gene transcription in Escherichia coli. Using a machine-learning approach, we reveal that guide RNAs sharing specific 5-nucleotide seed sequences can produce strong fitness defects or even kill E. coli regardless of the other 15 nucleotides of guide sequence. This effect occurs at high dCas9 concentrations and can be alleviated by tuning the expression of dCas9 while maintaining strong on-target repression. Our results also highlight the fact that off-targets with as little as nine nucleotides of homology to the guide RNA can strongly block gene expression. Altogether this study provides important design rules to safely use dCas9 in E. coli.CRISPR interference (CRISPRi) is a method for targeted silencing of transcription that requires the coexpression of protein dCas9 and a customized guide RNA. Here, Cui et al. show that certain guide RNAs induce toxicity in E. coli, and provide design rules to minimize off-target effects.
Carcinogenesis | 2016
Ali Tebbi; Florence Levillayer; Grégory Jouvion; Laurence Fiette; Guillaume Soubigou; Hugo Varet; Nesrine Boudjadja; Stefano Cairo; Kosuke Hashimoto; Ana Maria Suzuki; Piero Carninci; Annamaria Carissimo; Diego di Bernardo; Yu Wei
Summary The transporter of phosphatidylcholine Mdr2/MDR3 not only plays an essential role for bile formation but also is involved in the maintenance of lipid homeostasis. Deficiency of Mdr2 leads to accumulation of ROS, cell transformation and susceptibility to intestinal carcinogenesis.
Microbial Biotechnology | 2017
Julien Farasin; Sandrine Koechler; Hugo Varet; Julien Deschamps; Marie-Agnès Dillies; Caroline Proux; Mathieu Erhardt; Aline Huber; Bernd Jagla; Romain Briandet; Jean-Yves Coppée; Florence Arsène-Ploetze
Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA‐seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments.
Scientific Reports | 2018
Hugo Varet; Yana Shaulov; Odile Sismeiro; Meirav Trebicz-Geffen; Rachel Legendre; Jean-Yves Coppée; Serge Ankri; Nancy Guillén
Oxidative stress is one of the strongest toxic factors in nature: it can harm or even kill cells. Cellular means of subverting the toxicity of oxidative stress are important for the success of infectious diseases. Many types of bacterium inhabit the intestine, where they can encounter pathogens. During oxidative stress, we analyzed the interplay between an intestinal parasite (the pathogenic amoeba Entamoeba histolytica - the agent of amoebiasis) and enteric bacteria (microbiome residents, pathogens and probiotics). We found that live enteric bacteria protected E. histolytica against oxidative stress. By high-throughput RNA sequencing, two amoebic regulatory modes were observed with enteric bacteria but not with probiotics. The first controls essential elements of homeostasis, and the second the levels of factors required for amoeba survival. Characteristic genes of both modes have been acquired by the amoebic genome through lateral transfer from the bacterial kingdom (e.g. glycolytic enzymes and leucine-rich proteins). Members of the leucine-rich are homologous to proteins from anti-bacterial innate immune such as Toll-like receptors. The factors identified here suggest that despite its old age in evolutionary terms, the protozoan E. histolytica displays key characteristics of higher eukaryotes’ innate immune systems indicating that components of innate immunity existed in the common ancestor of plants and animals.
Nucleic Acids Research | 2018
Irina Randrianjatovo-Gbalou; Sandrine Rosario; Odile Sismeiro; Hugo Varet; Rachel Legendre; Jean-Yves Coppée; Valérie Huteau; Sylvie Pochet; Marc Delarue
Abstract Nucleic acid aptamers, especially RNA, exhibit valuable advantages compared to protein therapeutics in terms of size, affinity and specificity. However, the synthesis of libraries of large random RNAs is still difficult and expensive. The engineering of polymerases able to directly generate these libraries has the potential to replace the chemical synthesis approach. Here, we start with a DNA polymerase that already displays a significant template-free nucleotidyltransferase activity, human DNA polymerase theta, and we mutate it based on the knowledge of its three-dimensional structure as well as previous mutational studies on members of the same polA family. One mutant exhibited a high tolerance towards ribonucleotides (NTPs) and displayed an efficient ribonucleotidyltransferase activity that resulted in the assembly of long RNA polymers. HPLC analysis and RNA sequencing of the products were used to quantify the incorporation of the four NTPs as a function of initial NTP concentrations and established the randomness of each generated nucleic acid sequence. The same mutant revealed a propensity to accept other modified nucleotides and to extend them in long fragments. Hence, this mutant can deliver random natural and modified RNA polymers libraries ready to use for SELEX, with custom lengths and balanced or unbalanced ratios.
Bioinformatics | 2018
Hugo Varet; Jean-Yves Coppée
Summary: When sequencing several libraries simultaneously, the selection of compatible combinations of indexes is critical for ensuring that the sequencer will be able to decipher the short, sample‐specific barcodes added to each fragment. However, researchers have few tools to help them choose optimal indexes. Here, we present checkMyIndex, an online R/Shiny application that facilitates the selection of the right indexes as a function of the experimental constraints. Availability and implementation: checkMyIndex is available free of charge at https://checkmyindex.pasteur.fr as an online, web‐based R/Shiny application. The source code is available on GitHub at https://github.com/PF2‐pasteur‐fr/checkMyIndex.
BMC Genomics | 2018
Evelyne Krin; Sebastian Aguilar Pierlé; Odile Sismeiro; Bernd Jagla; Marie-Agnès Dillies; Hugo Varet; Oihane Irazoki; Susana Campoy; Zoé Rouy; Stéphane Cruveiller; Claudine Médigue; Jean-Yves Coppée; Didier Mazel
BackgroundThe SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment.ResultsComprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5’UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369–1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection.ConclusionsWe show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.