Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugues Lantuit is active.

Publication


Featured researches published by Hugues Lantuit.


Environmental Research Letters | 2014

The impact of the permafrost carbon feedback on global climate

Kevin Schaefer; Hugues Lantuit; Vladimir E. Romanovsky; Edward A. G. Schuur; Ronald Witt

Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4 )t o influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120±85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7±4.0% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29±0.21 °C or 7.8±5.7%. For RCP4.5, the scenario closest to the 2 °C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 °C, but the relative fraction of permafrost to total emissions increases to between 3% and 11%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 °C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation.


FEMS Microbiology Ecology | 2012

Methane‐cycling communities in a permafrost‐affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes

Béatrice Barbier; Isabel Dziduch; Susanne Liebner; Lars Ganzert; Hugues Lantuit; Wayne H. Pollard; Dirk Wagner

In Arctic wet tundra, microbial controls on organic matter decomposition are likely to be altered as a result of climatic disruption. Here, we present a study on the activity, diversity and vertical distribution of methane-cycling microbial communities in the active layer of wet polygonal tundra on Herschel Island. We recorded potential methane production rates from 5 to 40 nmol h(-1) g(-1) wet soil at 10 °C and significantly higher methane oxidation rates reaching values of 6-10 μmol h(-1) g(-1) wet soil. Terminal restriction fragment length polymorphism (T-RFLP) and cloning analyses of mcrA and pmoA genes demonstrated that both communities were stratified along the active layer vertical profile. Similar to other wet Arctic tundra, the methanogenic community hosted hydrogenotrophic (Methanobacterium) as well as acetoclastic (Methanosarcina and Methanosaeta) members. A pronounced shift toward a dominance of acetoclastic methanogens was observed in deeper soil layers. In contrast to related circum-Arctic studies, the methane-oxidizing (methanotrophic) community on Herschel Island was dominated by members of the type II group (Methylocystis, Methylosinus, and a cluster related to Methylocapsa). The present study represents the first on methane-cycling communities in the Canadian Western Arctic, thus advancing our understanding of these communities in a changing Arctic.


PLOS ONE | 2014

Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

Béatrice A. Frank-Fahle; Etienne Yergeau; Charles W. Greer; Hugues Lantuit; Dirk Wagner

Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.


Polar Research | 2011

Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006

Hugues Lantuit; David E. Atkinson; Pier Paul Overduin; Mikhail N. Grigoriev; Volker Rachold; Guido Grosse; Hans-Wolfgang Hubberten

This study investigates the rate of erosion during the 1951–2006 period on the Bykovsky Peninsula, located north-east of the harbour town of Tiksi, north Siberia. Its coastline, which is characterized by the presence of ice-rich sediment (Ice Complex) and the vicinity of the Lena River Delta, retreated at a mean rate of 0.59 m/yr between 1951 and 2006. Total erosion ranged from 434 m of erosion to 92 m of accretion during these 56 years and exhibited large variability (σ = 45.4). Ninety-seven percent of the rates observed were less than 2 m/yr and 81.6% were less than 1 m/yr. No significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951–2006. Erosion modes and rates actually appear to be strongly dependant on the nature of the backshore material, erosion being stronger along low-lying coastal stretches affected by past or current thermokarst activity. The juxtaposition of wind records monitored at the town of Tiksi and erosion records yielded no significant relationship despite strong record amplitude for both data sets. We explain this poor relationship by the only rough incorporation of sea-ice cover in our storm extraction algorithm, the use of land-based wind records vs. offshore winds, the proximity of the peninsula to the Lena River Delta freshwater and sediment plume and the local topographical constraints on wave development.


Geological Society, London, Special Publications | 2014

Coastal changes in the Arctic

Paul Overduin; M. C. Strzelecki; Mikhail N. Grigoriev; N. Couture; Hugues Lantuit; D. St-Hilaire-Gravel; Frank Günther; Sebastian Wetterich

Abstract The arctic environment is changing: air temperatures, major river discharges and open water season length have increased, and storm intensities and tracks are changing. Thirteen quantitative studies of the rates of coastline position change throughout the Arctic show that recently observed environmental changes have not led to ubiquitously or continuously increasing coastal erosion rates, which currently range between 0 and 2 m/yr when averaged for the arctic shelf seas. Current data is probably insufficient, both spatially and temporally, however, to capture change at decadal to sub-decadal time scales. In this context, we describe the current understanding of arctic coastal geomorphodynamics with an emphasis on erosional regimes of coasts with ice-rich sedimentary deposits in the Laptev, East Siberian and Beaufort seas, where local coastal erosion can exceed 20 m/yr. We also examine coasts with lithified (rocky) substrates where geomorphodynamics are intensified by rapid glacial retreat. Coastlines of Svalbard, Greenland and the Canadian Archipelago are less frequently studied than ice-rich continental coasts of North America and Siberia, and studies often focus on coastal sections composed of unlithified material. As air temperature and sea ice duration and extent change, longer thaw and wave seasons will intensify coastal dynamics in the Arctic.


Science of The Total Environment | 2017

Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic.

George Tanski; Hugues Lantuit; Saskia Ruttor; Christian Knoblauch; Boris Radosavljevic; Jens Strauss; Juliane Wolter; Anna Irrgang; Justine Ramage; Michael Fritz

The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (δ13C-TOC, δ13C-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, δ13C signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty acids, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source.


Polar Research | 2015

Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene

Carolyn Wegner; Katrina E. Bennett; Anne de Vernal; Matthias Forwick; Michael Fritz; Maija Heikkilä; Magdalena Łacka; Hugues Lantuit; Michał Laska; Mateusz Moskalik; Matthew O'Regan; Joanna Pawłowska; Agnieszka Promińska; Volker Rachold; Jorien E. Vonk; Kirstin Werner

Arctic coastal zones serve as a sensitive filter for terrigenous matter input onto the shelves via river discharge and coastal erosion. This material is further distributed across the Arctic by ocean currents and sea ice. The coastal regions are particularly vulnerable to changes related to recent climate change. We compiled a pan-Arctic review that looks into the changing Holocene sources, transport processes and sinks of terrigenous sediment in the Arctic Ocean. Existing palaeoceanographic studies demonstrate how climate warming and the disappearance of ice sheets during the early Holocene initiated eustatic sea-level rise that greatly modified the physiography of the Arctic Ocean. Sedimentation rates over the shelves and slopes were much greater during periods of rapid sea-level rise in the early and middle Holocene, as a result of the relative distance to the terrestrial sediment sources. However, estimates of suspended sediment delivery through major Arctic rivers do not indicate enhanced delivery during this time, which suggests enhanced rates of coastal erosion. The increased supply of terrigenous material to the outer shelves and deep Arctic Ocean in the early and middle Holocene might serve as analogous to forecast changes in the future Arctic.


EPIC3Recarbonization of the Biosphere (Ecosystems and the Global Carbon Cycle), Dordrecht Heidelberg New York London, Springer Book, 545 p., pp. 159-178, ISBN: 978-94-007-4158-4 | 2012

Permafrost – Physical Aspects, Carbon Cycling, Databases and Uncertainties

Julia Boike; Moritz Langer; Hugues Lantuit; Sina Muster; Kurt Roth; Torsten Sachs; Paul Overduin; Sebastian Westermann; A. David McGuire

Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future.


Global Biogeochemical Cycles | 2016

Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean

George Tanski; N. Couture; Hugues Lantuit; Antje Eulenburg; Michael Fritz

Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0 mg L^-1 with an estimated stock of 13.6 ± 3.0 g m^-3 along the YC. An annual DOC flux of 54.9 ± 0.9 Mg yr^-1 was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.


Polar Research | 2016

Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation

Juliane Wolter; Hugues Lantuit; Michael Fritz; Marc Macias-Fauria; Isla H. Myers-Smith; Ulrike Herzschuh

Changing environmental and geomorphological conditions are resulting in vegetation change in ice-wedge polygons in Arctic tundra. However, we do not yet know how microscale vegetation patterns relate to individual environmental and geomorphological parameters. This work aims at examining these relations in polygonal terrain. We analysed composition and cover of vascular plant taxa and surface height, active layer depth, soil temperature, carbon and nitrogen content, pH and electrical conductivity in four polygon mires located on the Yukon coast. We found that vascular plant species composition and cover correlates best with relative surface height. Ridges of low-centred polygons and raised centres of high-centred polygons support the growth of mesic and wetland species (e.g., Betula glandulosa, Salix pulchra, S. reticulata, Rubus chamaemorus, various ericaceous dwarf shrubs, Eriophorum vaginatum, Poa arctica). Wetland and aquatic plant species (e.g., E. angustifolium, Carex aquatilis, C. chordorrhiza, Pedicularis sudetica) grow in low-lying centres of polygons and in troughs between polygons. We also found a relationship between vascular plant species composition and substrate characteristics such as pH, electrical conductivity and total organic carbon, although the individual influence of these parameters could not be determined because of their correlation with relative surface height. Our findings stress the regulatory role of microtopography and substrate in vegetation dynamics of polygonal terrain. Ongoing warming in this region will lead to changes to polygonal terrain through permafrost degradation and subsequent conversion of low-centred into high-centred polygons. Our results indicate that shrubs, particularly Betula glandulosa and heath species, have the potential to expand most.

Collaboration


Dive into the Hugues Lantuit's collaboration.

Top Co-Authors

Avatar

Michael Fritz

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Couture

Geological Survey of Canada

View shared research outputs
Top Co-Authors

Avatar

Sebastian Wetterich

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Birgit Heim

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanno Meyer

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Wolfgang Hubberten

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge