Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugues Sicotte is active.

Publication


Featured researches published by Hugues Sicotte.


The New England Journal of Medicine | 2015

Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors

Jeanette E. Eckel-Passow; Daniel H. Lachance; Annette M. Molinaro; Kyle M. Walsh; Paul A. Decker; Hugues Sicotte; Melike Pekmezci; Terri Rice; Matt L. Kosel; Ivan Smirnov; Gobinda Sarkar; Alissa Caron; Thomas M. Kollmeyer; Corinne Praska; Anisha R. Chada; Chandralekha Halder; Helen M. Hansen; Lucie McCoy; Paige M. Bracci; Roxanne Marshall; Shichun Zheng; Gerald F. Reis; Alexander R. Pico; Brian Patrick O’Neill; Jan C. Buckner; Caterina Giannini; Jason T. Huse; Arie Perry; Tarik Tihan; Mitchell S. Berger

BACKGROUND The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).


Nucleic Acids Research | 2006

SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes

Bernice Packer; Meredith Yeager; Laura Burdett; Robert Welch; Michael Beerman; Liqun Qi; Hugues Sicotte; Brian Staats; Mekhala Acharya; Andrew Crenshaw; Andrew Eckert; Vinita Puri; Daniela S. Gerhard; Stephen J. Chanock

The SNP500Cancer database provides sequence and genotype assay information for candidate SNPs useful in mapping complex diseases, such as cancer. The database is an integral component of the NCI Cancer Genome Anatomy Project (). SNP500Cancer reports sequence analysis of anonymized control DNA samples (n = 102 Coriell samples representing four self-described ethnic groups: African/African-American, Caucasian, Hispanic and Pacific Rim). The website is searchable by gene, chromosome, gene ontology pathway, dbSNP ID and SNP500Cancer SNP ID. As of October 2005, the database contains >13 400 SNPs, 9124 of which have been sequenced in the SNP500Cancer population. For each analysed SNP, gene location and >200 bp of surrounding annotated sequence (including nearby SNPs) are provided, with frequency information in total and per subpopulation as well as calculation of Hardy–Weinberg equilibrium for each subpopulation. The website provides the conditions for validated sequencing and genotyping assays, as well as genotype results for the 102 samples, in both viewable and downloadable formats. A subset of sequence validated SNPs with minor allele frequency >5% are entered into a high-throughput pipeline for genotyping analysis to determine concordance for the same 102 samples. In addition, the results of genotype analysis for select validated SNP assays (defined as 100% concordance between sequence analysis and genotype results) are posted for an additional 280 samples drawn from the Human Diversity Panel (HDP). SNP500Cancer provides an invaluable resource for investigators to select SNPs for analysis, design genotyping assays using validated sequence data, choose selected assays already validated on one or more genotyping platforms, and select reference standards for genotyping assays. The SNP500Cancer database is freely accessible via the web page at .


Nature Genetics | 2014

Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk

Kyle M. Walsh; Veryan Codd; Ivan Smirnov; Terri Rice; Paul A. Decker; Helen M. Hansen; Thomas M. Kollmeyer; Matthew L. Kosel; Annette M. Molinaro; Lucie McCoy; Paige M. Bracci; Belinda S. Cabriga; Melike Pekmezci; Shichun Zheng; Joseph L. Wiemels; Alexander R. Pico; Tarik Tihan; Mitchell S. Berger; Susan M. Chang; Michael D. Prados; Daniel H. Lachance; Brain Patrick O'Neill; Hugues Sicotte; Jeanette E. Eckel-Passow; Pim van der Harst; John K. Wiencke; Nilesh J. Samani; Robert B. Jenkins; Margaret Wrensch

Glioma, the most common central nervous system cancer in adults, has poor prognosis. Here we identify a new SNP associated with glioma risk, rs1920116 (near TERC), that reached genome-wide significance (Pcombined = 8.3 × 10−9) in a meta-analysis of genome-wide association studies (GWAS) of high-grade glioma and replication data (1,644 cases and 7,736 controls). This region has previously been associated with mean leukocyte telomere length (LTL). We therefore examined the relationship between LTL and both this new risk locus and other previously established risk loci for glioma using data from a recent GWAS of LTL (n = 37,684 individuals). Alleles associated with glioma risk near TERC and TERT were strongly associated with longer LTL (P = 5.5 × 10−20 and 4.4 × 10−19, respectively). In contrast, risk-associated alleles near RTEL1 were inconsistently associated with LTL, suggesting the presence of distinct causal alleles. No other risk loci for glioma were associated with LTL. The identification of risk alleles for glioma near TERC and TERT that also associate with telomere length implicates telomerase in gliomagenesis.


Hypertension | 2008

Genomic Association Analysis Suggests Chromosome 12 Locus Influencing Antihypertensive Response to Thiazide Diuretic

Stephen T. Turner; Kent R. Bailey; Brooke L. Fridley; Arlene B. Chapman; Gary L. Schwartz; High Seng Chai; Hugues Sicotte; Jean Pierre A Kocher; Andrei S. Rodin; Eric Boerwinkle

We conducted a genome-wide association study to identify novel genes influencing diastolic blood pressure (BP) response to hydrochlorothiazide, a commonly prescribed thiazide diuretic preferred for the treatment of high BP. Affymetrix GeneChip Human Mapping 100K Arrays were used to measure single nucleotide polymorphisms across the 22 autosomes in 194 non-Hispanic black subjects and 195 non-Hispanic white subjects with essential hypertension selected from opposite tertiles of the race- and sex-specific distributions of age-adjusted diastolic BP response to hydrochlorothiazide (25 mg daily, PO, for 4 weeks). The black sample consisted of 97 “good” responders (diastolic BP response [mean±SD]=−18.3±4.2 mm Hg; age=47.1±6.1 years; 51.5% women) and 97 “poor” responders (diastolic BP response=−0.18±4.3; age=47.4±6.5 years; 51.5% women). Haplotype trend regression identified a region of chromosome 12q15 in which haplotypes constructed from 3 successive single nucleotide polymorphisms (rs317689, rs315135, and rs7297610) in proximity to lysozyme (LYZ), YEATS domain containing 4 (YEATS4), and fibroblast growth receptor substrate 2 (FRS2) were significantly associated with diastolic BP response (nominal P=2.39×10−7; Bonferroni corrected P=0.024; simulated experiment-wise P=0.040). Genotyping of 35 additional single nucleotide polymorphisms selected to “tag” linkage disequilibrium blocks in these genes provided corroboration that variation in LYZ and YEATS4 was associated with diastolic BP response in a statistically independent data set of 291 black subjects and in the sample of 294 white subjects. These results support the use of genome-wide association analyses to identify novel genes influencing antihypertensive drug responses.


Nature Genetics | 2012

A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation

Robert B. Jenkins; Yuanyuan Xiao; Hugues Sicotte; Paul A. Decker; Thomas M. Kollmeyer; Helen M. Hansen; Matthew L. Kosel; Shichun Zheng; Kyle M. Walsh; Terri Rice; Paige M. Bracci; Lucie McCoy; Ivan Smirnov; Joseph S. Patoka; George Hsuang; Joseph L. Wiemels; Tarik Tihan; Alexander R. Pico; Michael D. Prados; Susan M. Chang; Mitchel S. Berger; Alissa Caron; Stephanie R. Fink; Chandralekha Halder; Amanda L. Rynearson; Brooke L. Fridley; Jan C. Buckner; Brian Patrick O'Neill; Caterina Giannini; Daniel H. Lachance

Variants at 8q24.21 have been shown to be associated with glioma development. By means of tag SNP genotyping and imputation, pooled next-generation sequencing using long-range PCR and subsequent validation SNP genotyping, we identified seven low-frequency SNPs at 8q24.21 that were strongly associated with glioma risk (P = 1 × 10−25 to 1 × 10−14). The most strongly associated SNP, rs55705857, remained highly significant after individual adjustment for the other top six SNPs and two previously published SNPs. After stratifying by histological and tumor genetic subtype, the most significant associations of rs55705857 were with oligodendroglial tumors and gliomas with mutant IDH1 or IDH2 (odds ratio (OR) = 5.1, P = 1.1 × 10−31 and OR = 4.8, P = 6.6 × 10−22, respectively). Strong associations were observed for astrocytomas with mutated IDH1 or IDH2 (grades 2–4) (OR = 5.16–6.66, P = 4.7 × 10−12 to 2.2 × 10−8) but not for astrocytomas with wild-type IDH1 and IDH2 (smallest P = 0.26). The conserved sequence block that includes rs55705857 is consistently modeled as a microRNA.


PLOS ONE | 2009

Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines.

Liang Wang; Ann L. Oberg; Yan W. Asmann; Hugues Sicotte; Shannon K. McDonnell; Shaun M. Riska; Wanguo Liu; Clifford J. Steer; Subbaya Subramanian; Julie M. Cunningham; James R. Cerhan; Stephen N. Thibodeau

Background Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs) are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs. Methodology/Principal Findings To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs) in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01). Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b) demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation. Conclusions/Significance This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of human populations.


BMC Bioinformatics | 2014

MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing

Krishna R. Kalari; Asha Nair; Jaysheel D. Bhavsar; Daniel O’Brien; Jaime Davila; Matthew A Bockol; Jinfu Nie; Xiaojia Tang; Saurabh Baheti; Jay B Doughty; Sumit Middha; Hugues Sicotte; Aubrey E. Thompson; Yan W. Asmann; Jean-Pierre A. Kocher

BackgroundAlthough the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome.ResultsFor optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients.ConclusionsOur software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.


European Journal of Human Genetics | 2011

Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling

Robert R. McWilliams; Eric D. Wieben; Kari G. Rabe; Katrina Pedersen; Yanhong Wu; Hugues Sicotte; Gloria M. Petersen

Germline mutations in CDKN2A have been reported in pancreatic cancer families, but genetic counseling for pancreatic cancer risk has been limited by lack of information on CDKN2A mutation carriers outside of selected pancreatic or melanoma kindreds. Lymphocyte DNA from consecutive, unselected white non-Hispanic patients with pancreatic adenocarcinoma was used to sequence CDKN2A. Frequencies of mutations that alter the coding of p16INK4 or p14ARF were quantified overall and in subgroups. Penetrance and likelihood of carrying mutations by family history were estimated. Among 1537 cases, 9 (0.6%) carried germline mutations in CDKN2A, including three previously unreported mutations. CDKN2A mutation carriers were more likely to have a family history of pancreatic cancer (P=0.003) or melanoma (P=0.03), and a personal history of melanoma (P=0.01). Among cases who reported having a first-degree relative with pancreatic cancer or melanoma, the carrier proportions were 3.3 and 5.3%, respectively. Penetrance for mutation carriers by age 80 was calculated to be 58% for pancreatic cancer (95% confidence interval (CI) 8–86%), and 39% for melanoma (95% CI 0–80). Among cases who ever smoked cigarettes, the risk for pancreatic cancer was higher for carriers compared with non-carriers (HR 25.8, P=2.1 × 10−13), but among nonsmokers, this comparison did not reach statistical significance. Germline mutations in CDKN2A among unselected pancreatic cancer patients are uncommon, although notably penetrant, especially among smokers. Carriers of germline mutations of CDKN2A should be counseled to avoid tobacco use to decrease risk of pancreatic cancer in addition to taking measures to decrease melanoma risk.


Nature Genetics | 2017

Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors.

Beatrice Melin; Jill S. Barnholtz-Sloan; Margaret Wrensch; Christoffer Johansen; Dora Il'yasova; Ben Kinnersley; Quinn T. Ostrom; Karim Labreche; Yanwen Chen; Georgina Armstrong; Yanhong Liu; Jeanette E. Eckel-Passow; Paul A. Decker; Marianne Labussière; Ahmed Idbaih; Khê Hoang-Xuan; Anna-Luisa Di Stefano; Karima Mokhtari; Jean-Yves Delattre; Peter Broderick; Pilar Galan; Konstantinos Gousias; Johannes Schramm; Minouk J. Schoemaker; Sarah Fleming; Stefan Herms; Stefanie Heilmann; Markus M. Nöthen; Heinz-Erich Wichmann; Stefan Schreiber

Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, but individual studies have had limited power to identify risk loci. We performed a meta-analysis of existing GWAS and two new GWAS, which totaled 12,496 cases and 18,190 controls. We identified five new loci for glioblastoma (GBM) at 1p31.3 (rs12752552; P = 2.04 × 10−9, odds ratio (OR) = 1.22), 11q14.1 (rs11233250; P = 9.95 × 10−10, OR = 1.24), 16p13.3 (rs2562152; P = 1.93 × 10−8, OR = 1.21), 16q12.1 (rs10852606; P = 1.29 × 10−11, OR = 1.18) and 22q13.1 (rs2235573; P = 1.76 × 10−10, OR = 1.15), as well as eight loci for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 × 10−9, OR = 1.19), 1q44 (rs12076373; P = 2.63 × 10−10, OR = 1.23), 2q33.3 (rs7572263; P = 2.18 × 10−10, OR = 1.20), 3p14.1 (rs11706832; P = 7.66 × 10−9, OR = 1.15), 10q24.33 (rs11598018; P = 3.39 × 10−8, OR = 1.14), 11q21 (rs7107785; P = 3.87 × 10−10, OR = 1.16), 14q12 (rs10131032; P = 5.07 × 10−11, OR = 1.33) and 16p13.3 (rs3751667; P = 2.61 × 10−9, OR = 1.18). These data substantiate that genetic susceptibility to GBM and non-GBM tumors are highly distinct, which likely reflects different etiology.


Genetic Epidemiology | 2013

Analysis of 60 Reported Glioma Risk SNPs Replicates Published GWAS Findings but Fails to Replicate Associations From Published Candidate‐Gene Studies

Kyle M. Walsh; Erik Anderson; Helen M. Hansen; Paul A. Decker; Matt L. Kosel; Thomas M. Kollmeyer; Terri Rice; Shichun Zheng; Yuanyuan Xiao; Jeffrey S. Chang; Lucie McCoy; Paige M. Bracci; Joseph L. Wiemels; Alexander R. Pico; Ivan Smirnov; Daniel H. Lachance; Hugues Sicotte; Jeanette E. Eckel-Passow; John K. Wiencke; Robert B. Jenkins; Margaret Wrensch

Genomewide association studies (GWAS) and candidate‐gene studies have implicated single‐nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case‐control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate‐gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P < 0.05), with all associations in the same direction as in previous reports. Several SNP associations showed considerable differences across histologic subtype. All eight successfully replicated associations were first identified by GWAS, although none of the putative risk SNPs from candidate‐gene studies was associated in the full case‐control sample (all P values > 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate‐gene approach lay in selecting both appropriate genes and relevant SNPs within these genes.

Collaboration


Dive into the Hugues Sicotte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weihong Tang

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge