Hui Chen Wang
National Defense Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui Chen Wang.
International Journal of Cancer | 2008
Hung Cheng Lai; Ya Wen Lin; Tim H M Huang; Pearlly S. Yan; Rui Lan Huang; Hui Chen Wang; Michael W.Y. Chan; Tang-Yuan Chu; Chien An Sun; Cheng Chang; Mu Hsien Yu
Testing for DNA methylation has potential in cancer screening. Most previous studies of DNA methylation in cervical cancer used a candidate gene approach. The aim our study was to identify novel genes that are methylated in cervical cancers and to test their potential in clinical applications. We did a differential methylation hybridization using a CpG island (CGI) microarray containing 8640 CGI tags to uncover methylated genes in squamous cell carcinomas (SCC) of the uterine cervix. Pooled DNA from cancer tissues and normal cervical swabs were used for comparison. Methylation‐specific polymerase chain reaction, bisulfite sequencing and reverse transcription polymerase chain reaction were used to confirm the methylation status in cell lines, normal cervices (n = 45), low‐grade lesions (n = 45), high‐grade lesions (HSIL; n = 58) and invasive squamous cell carcinomas (SCC; n = 22 from swabs and n = 109 from tissues). Human papillomavirus (HPV) was detected using reverse line blots. We reported 6 genes (SOX1, PAX1, LMX1A, NKX6‐1, WT1 and ONECUT1) more frequently methylated in SCC tissues (81.5, 94.4, 89.9, 80.4, 77.8 and 20.4%, respectively) than in their normal controls (2.2, 0, 6.7, 11.9, 11.1 and 0%, respectively; p < 0.0001). Parallel testing of HPV and PAX1 methylation in cervical swabs confers an improved sensitivity than HPV testing alone (80% vs. 66%) without compromising specificity (63% vs. 64%) for HSIL/SCC. Testing PAX1 methylation marker alone, the specificity for HSIL/SCC is 99%. The analysis of these novel DNA methylations may be a promising approach for the screening of cervical cancers.
Cancer | 2010
Hung Cheng Lai; Ya Wen Lin; Rui Lan Huang; Ming Tzeung Chung; Hui Chen Wang; Yu Ping Liao; Po Hsuan Su; Yung Liang Liu; Mu Hsien Yu
DNA methylation may be used a potential biomarker for detecting cervical cancer. The authors of this report used quantitative methylation analysis of 4 genes in a full spectrum of cervical lesions to test its potential clinical application.
Epigenetics | 2013
Rui Lan Huang; Fei Gu; Nameer B. Kirma; Jianhua Ruan; Chun Liang Chen; Hui Chen Wang; Yu Ping Liao; Cheng Chang Chang; Mu Hsien Yu; Jay Pilrose; Ian M. Thompson; H.-C. Huang; Tim H M Huang; Hung Cheng Lai; Kenneth P. Nephew
Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating “hit” during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan–Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.
International Journal of Cancer | 2014
Yu Chih Chen; Rui Lan Huang; Yung Kai Huang; Yu Ping Liao; Po Hsuan Su; Hui Chen Wang; Cheng Chang Chang; Ya Wen Lin; Mu Hsien Yu; Tang-Yuan Chu; Hung Cheng Lai
Using DNA methylation biomarkers in cancer detection is a potential direction in clinical testing. Some methylated genes have been proposed for cervical cancer detection; however, more reliable methylation markers are needed. To identify new hypermethylated genes in the discovery phase, we compared the methylome between a pool of DNA from normal cervical epithelium (n = 19) and a pool of DNA from cervical cancer tissues (n = 38) using a methylation bead array. We integrated the differentially methylated genes with public gene expression databases, which resulted in 91 candidate genes. Based on gene expression after demethylation treatment in cell lines, we confirmed 61 genes for further validation. In the validation phase, quantitative MSP and bisulfite pyrosequencing were used to examine their methylation level in an independent set of clinical samples. Fourteen genes, including ADRA1D, AJAP1, COL6A2, EDN3, EPO, HS3ST2, MAGI2, POU4F3, PTGDR, SOX8, SOX17, ST6GAL2, SYT9, and ZNF614, were significantly hypermethylated in CIN3+ lesions. The sensitivity, specificity, and accuracy of POU4F3 for detecting CIN3+ lesions were 0.88, 0.82, and 0.85, respectively. A bioinformatics function analysis revealed that AJAP1, EDN3, EPO, MAGI2, and SOX17 were potentially implicated in β‐catenin signaling, suggesting the epigenetic dysregulation of this signaling pathway during cervical cancer development. The concurrent methylation of multiple genes in cancers and in subsets of precancerous lesions suggests the presence of a driver of methylation phenotype in cervical carcinogenesis. Further validation of these new genes as biomarkers for cervical cancer screening in a larger population‐based study is warranted.
Oncogene | 2013
Po-Hsuan Su; Yen-Shing Lin; Rui Lan Huang; Yu-Ping Liao; H. Y. Lee; Hui Chen Wang; Tai-Kuang Chao; C. K. Chen; Michael W.Y. Chan; Tang-Yuan Chu; Mu Hsien Yu; Hung-Cheng Lai
Epigenetic modifications are a driving force in carcinogenesis. However, their role in cancer metastasis remains poorly understood. The present study investigated the role of DNA methylation in the cervical cancer metastasis. Here, we report evidence of the overexpression of DNA methyltransferases 3B (DNMT3B) in invasive cervical cancer and of the inhibition of metastasis by DNMT3B interference. Using methyl-DNA immunoprecipitation coupled with microarray analysis, we found that the protein tyrosine phosphatase receptor type R (PTPRR) was silenced through DNMT3B-mediated methylation in the cervical cancer. PTPRR inhibited p44/42 MAPK signaling, the expression of the transcription factor AP1, human papillomavirus (HPV) oncogenes E6/E7 and DNMTs. The methylation status of PTPRR increased in cervical scrapings (n=358) in accordance with disease severity, especially in invasive cancer. Methylation of the PTPRR promoter has an important role in the metastasis and may be a biomarker of invasive cervical cancer.
International Journal of Gynecological Cancer | 2014
Cheng Chang Chang; Rui Lan Huang; Hui Chen Wang; Yu Ping Liao; Mu Hsien Yu; Hung Cheng Lai
Objective This study aimed to investigate the status of DNA methylation of 6 genes, LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582, previously found from squamous cell carcinomas in adenocarcinomas (ACs) of the uterine cervix. Methods We assessed the methylation status of these genes in 40 ACs, cervical scrapings from 23 ACs, and 67 normal control cervices by real-time quantitative methylation-specific polymerase chain reaction. The results were validated by bisulfite pyrosequencing. Results The methylation levels of all the 6 genes in the ACs were significantly higher than those in normal cervical tissues, especially for PAX1, PTPRR, SOX1, and ZNF582. The odds ratios and 95% confidence intervals (CIs) of high methylation levels in PAX1, PTPRR, SOX1, and ZNF582 for the risk of developing an AC were 15.7 (95% CI, 7.0–40.6), 16.9 (95% CI, 7.6–43.0), 32.1 (95% CI, 12.1–124.3), and 25.4 (95% CI, 10.4–78.3), respectively (all P < 0.001). The methylation indices of PAX1, PTPRR, SOX1, and ZNF582 recovered from scrapings of ACs were significantly higher than in normal controls. The odds ratios of these indices for the risk of developing an AC in PAX1, PTPRR, SOX1, and ZNF582 were 6.2 (95% CI, 2.6–15.4), 12.1(95% CI, 3.8–46.4), 6.2 (95% CI, 2.6–15.8), and 20.6 (95% CI, 6.9–77.5), respectively (all P < 0.001). Conclusions Cervical ACs carry aberrantly high methylation rates of PAX1, PTPRR, SOX1, and ZNF582—commonly methylated in squamous cell carcinomas—which might help for AC screening.ObjectiveThis study aimed to investigate the status of DNA methylation of 6 genes, LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582, previously found from squamous cell carcinomas in adenocarcinomas (ACs) of the uterine cervix. MethodsWe assessed the methylation status of these genes in 40 ACs, cervical scrapings from 23 ACs, and 67 normal control cervices by real-time quantitative methylation-specific polymerase chain reaction. The results were validated by bisulfite pyrosequencing. ResultsThe methylation levels of all the 6 genes in the ACs were significantly higher than those in normal cervical tissues, especially for PAX1, PTPRR, SOX1, and ZNF582. The odds ratios and 95% confidence intervals (CIs) of high methylation levels in PAX1, PTPRR, SOX1, and ZNF582 for the risk of developing an AC were 15.7 (95% CI, 7.0–40.6), 16.9 (95% CI, 7.6–43.0), 32.1 (95% CI, 12.1–124.3), and 25.4 (95% CI, 10.4–78.3), respectively (all P < 0.001). The methylation indices of PAX1, PTPRR, SOX1, and ZNF582 recovered from scrapings of ACs were significantly higher than in normal controls. The odds ratios of these indices for the risk of developing an AC in PAX1, PTPRR, SOX1, and ZNF582 were 6.2 (95% CI, 2.6–15.4), 12.1(95% CI, 3.8–46.4), 6.2 (95% CI, 2.6–15.8), and 20.6 (95% CI, 6.9–77.5), respectively (all P < 0.001). ConclusionsCervical ACs carry aberrantly high methylation rates of PAX1, PTPRR, SOX1, and ZNF582—commonly methylated in squamous cell carcinomas—which might help for AC screening.
BMC Cancer | 2015
Cheng Chang Chang; Rui Lan Huang; Yu Ping Liao; Po Hsuan Su; Yaw Wen Hsu; Hui Chen Wang; Chau Yang Tien; Mu Hsien Yu; Ya Wen Lin; Hung Cheng Lai
BackgroundNon-attendance at gynecological clinics is a major limitation of cervical cancer screening and self-collection of samples may improve this situation. Although HPV testing of self-collected vaginal samples is acceptable, the specificity is inadequate. The current focus is increasing self-collection of vaginal samples to minimize clinic visits. In this study, we analyzed the concordance and clinical performance of DNA methylation biomarker (PAX1, SOX1, and ZNF582) detection in self-collected vaginal samples and physician-collected cervical samples for the identification of cervical neoplasm.MethodsWe enrolled 136 cases with paired methylation data identified from abnormal Pap smears (n = 126) and normal controls (n = 10) regardless of HPV status at gynecological clinics. The study group comprised 37 cervical intraepithelial neoplasm I (CIN1), 23 cervical intraepithelial neoplasm II (CIN2), 16 cervical intraepithelial neoplasm III (CIN3), 30 carcinoma in situ (CIS), 13 squamous cell carcinomas (SCCs) and seven adenocarcinomas (ACs)/adenosquamous carcinomas (ASCs). PAX1, SOX1 and ZNF582 methylation in study samples was assessed by real-time quantitative methylation-specific polymerase chain reaction analysis. We generated methylation index cutoff values for the detection of CIN3+ in physician-collected cervical samples for analysis of the self-collected group. Concordance between the physician-collected and self-collected groups was evaluated by Cohen’s Kappa. Sensitivity, specificity and area under curve (AUC) were calculated for detection of CIN3+ lesions. Finally, we produced an optimal cutoff value with the best sensitivity from the self-collected groups.ResultsWe generated a methylation index cutoff value from physician-collected samples for detection of CIN3+. There were no significant differences in sensitivity, specificity of PAX1, SOX1 and ZNF582 between the self-collected and physician-collected groups. The methylation status of all three genes in the normal control samples, and the CIN 1, CIN2, CIN3, CIS, ACs/ASCs and SCC samples showed reasonable to good concordance between the two groups (κ = 0.443, 0.427, and 0.609 for PAX1, SOX1, and ZNF582, respectively). In determining the optimal cutoff values from the self-collected group, ZNF582 showed the highest sensitivity (0.77; 95%CI, 0.65–0.87) using a cutoff value of 0.0204.ConclusionsMethylation biomarker analysis of the three genes for detection of CIN3+ lesions shows reasonable to good concordance between the self-collected and physician-collected samples. Therefore, self-collection of samples could be adopted to decrease non-attendance and improve cervical screening.
Clinical Cancer Research | 2017
Rui Lan Huang; Po Hsuan Su; Yu Ping Liao; Tzu I. Wu; Ya Ting Hsu; Wei Yu Lin; Hui Chen Wang; Yu Chun Weng; Yu Che Ou; Tim H M Huang; Hung Cheng Lai
Purpose: Endometrial cancer is a common gynecologic cancer whose incidence is increasing annually worldwide. Current methods to detect endometrial cancer are unreliable and biomarkers are unsatisfactory for screening. Cervical scrapings were reported as a potential source of material for molecular testing. DNA methylation is a promising cancer biomarker, but limited use for detecting endometrial cancer. Experimental Design: We analyzed two methylomics databases of endometrioid-type endometrial cancer. Using nonnegative matrix factorization algorithm clustered the methylation pattern and reduced the candidate genes. We verified in pools DNA from endometrial cancer tissues and cervical scrapings, and validated in 146 cervical scrapings from patients with endometrioid-type endometrial cancer (n = 50), uterine myoma (n = 40), and healthy controls (n = 56) using quantitative methylation–specific PCR (QMSP). The logistic regression was used to evaluate the performance of methylation signal and gene combination. Results: We filtered out 180 methylated genes, which constituted four consensus clusters. Serial testing of tissues and cervical scrapings detected 14 genes that are hypermethylated in endometrial cancer. Three genes, BHLHE22, CDO1, and CELF4, had the best performance. Individual genes were sensitivity of 83.7%–96.0% and specificity of 78.7%–96.0%. A panel comprising any two of the three hypermethylated genes reached a sensitivity of 91.8%, specificity of 95.5%, and odds ratio of 236.3 (95% confidence interval, 56.4–989.6). These markers were also applied to cervical scrapings of type II endometrial cancer patients, and detected in 13 of 14 patients. Conclusions: This study demonstrates the potential use of methylated BHLHE22/CDO1/CELF4 panel for endometrial cancer screening of cervical scrapings. Clin Cancer Res; 23(1); 263–72. ©2016 AACR.
Journal of Gynecologic Oncology | 2017
Yaw Wen Hsu; Rui Lan Huang; Po Hsuan Su; Yu Chih Chen; Hui Chen Wang; Chi Chun Liao; Hung Cheng Lai
Objective Hypermethylation of human papillomavirus (HPV) and host genes has been reported in cervical cancer. However, the degree of methylation of different HPV types relative to the severity of the cervical lesions remains controversial. Studies of the degree of methylation associated with the host gene and the HPV genome to the severity of cervical lesions are rare. We examined the association of methylation status between host genes and late gene 1 (L1) regions of HPV16, 18, 52, and 58 in cervical brushings. Methods Cervical brushings from 147 HPV-infected patients were obtained. The samples comprised normal (n=28), cervical intraepithelial neoplasia (CIN) 1 (n=45), CIN2 (n=13), and CIN3/carcinoma in situ (n=61). The methylation status of HPV and host genes was measured using bisulfite pyrosequencing and quantitative methylation-specific polymerase chain reaction (PCR). Results The degree of methylation of L1 in HPV16, 18, and 52 was associated with the severity of the cervical lesion. In HPV52, C-phosphate-G (CpG) sites 6368m, 6405m, and 6443m showed significantly higher methylation in lesions ≥CIN3 (p=0.005, 0.003, and 0.026, respectively). Methylation of most HPV types except HPV52 (r<−0.1) was positively correlated with the degree of methylation of host genes including PAX1 and SOX1 (0.4≤r≤0.7). Combining HPV methylation with PAX1 methylation improved the clustering for ≥CIN2. Conclusion Our study showed that the degree of L1 methylation of HPV16, 18, and 52 but not 58 is associated with the severity of cervical lesions. The association between HPV methylation and host gene methylation suggests different responses of host cellular epigenetic machinery to different HPV genotypes.
Journal of Gynecologic Oncology | 2018
Cheng Chang Chang; Hui Chen Wang; Yu Ping Liao; Yu Chih Chen; Yu Chun Weng; Mu Hsien Yu; Hung Cheng Lai
Objective We hypothesized that DNA methylation of development-related genes may occur in endometrial cancer (EC)/ovarian cancer (OC) and may be detected in cervical scrapings. Methods We tested methylation status by quantitative methylation-specific polymerase chain reaction for 14 genes in DNA pools of endometrial and OC tissues. Tissues of EC/normal endometrium, OC/normal ovary, were verified in training set using cervical scrapings of 10 EC/10 OC patients and 10 controls, and further validated in the testing set using independent cervical scrapings in 30 EC/30 OC patients and 30 controls. We generated cutoff values of methylation index (M-index) from cervical scrapings to distinguish between cancer patients and control. Sensitivity/specificity of DNA methylation biomarkers in detecting EC and OC was calculated. Results Of 14 genes, 4 (PTGDR, HS3ST2, POU4F3, MAGI2) showed hypermethylation in EC and OC tissues, and were verified in training set. POU4F3 and MAGI2 exhibited hypermethylation in training set were validated in independent cases. The mean M-index of POU4F3 is 78.28 in EC and 20.36 in OC, which are higher than that in controls (6.59; p<0.001 and p=0.100, respectively), and that of MAGI2 is 246.0 in EC and 12.2 in OC, which is significantly higher that than in controls (2.85; p<0.001 and p=0.480, respectively). Sensitivity and specificity of POU4F3/MAGI2 were 83%–90% and 69%–75% for detection of EC, and 61% and 62%–69% for the detection of OC. Conclusion The findings demonstrate the potential of EC/OC detection through testing for DNA methylation in cervical scrapings.