Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui-Fu Wang.
Oncotarget | 2017
Cheng-Cheng Zhang; Jun-Xia Zhu; Yu Wan; Lin Tan; Hui-Fu Wang; Jin-Tai Yu; Lan Tan
Microtubule-associated protein tau (MAPT) gene is compelling among the susceptibility genes of neurodegenerative diseases which include Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Our meta-analysis aimed to find the association between MAPT and the risk of these diseases. Published literatures were retrieved from MEDLINE and other databases, and 82 case-control studies were recruited. Six haplotype tagging single-nucleotide polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del-In9 and rs7521) and haplotypes (H2 and H1c) were significantly associated with the above diseases. The odds ratios (ORs) and 95 % confidence intervals (CIs) were evaluated by comparison in minor and major allele frequency using the R software. This study demonstrated that different variants in MAPT were associated with AD (rs2471738: OR= 1.04, 95%CI = 1.00 - 1.09; H2: OR = 0.94, 95% CI = 0.91 - 0.97), PD (H2: OR = 0.76, 95% CI = 0.74 - 0.79), PSP (rs242557: OR = 1. 96, 95% CI = 1. 71 - 2.25; rs2471738: OR = 1. 85, 95% CI = 1. 48 - 2.31; H2: OR = 0.20, 95% CI = 0.18 - 0.23), CBD (rs242557: OR = 2.51, 95%CI = 1. 66 -3.78; rs2471738: OR = 2.07, 95%CI = 1. 32 -3.23; H2: OR = OR = 0.30, 95% CI = 0.23 - 0.41) and ALS (H2: OR = 0.92, 95% CI = 0.86 - 0.98) instead of FTD (H2: OR = 1.02, 95% CI = 0.78 - 1.32). In conclusion, MAPT is associated with risk of neurodegenerative diseases, suggesting crucial roles of tau in neurodegenerative processes.
Oncotarget | 2016
Yu Gao; Meng-Shan Tan; Hui-Fu Wang; Wei Zhang; Zi-Xuan Wang; Teng Jiang; Jin-Tai Yu; Lan Tan
Recently, a large genome-wide association study (GWAS) has identified a novel variant (rs1476679) within ZCWPW1 showing strong association with late-onset Alzheimers disease (LOAD) in Caucasian. However, the effect of rs1476679 on other populations remains unclear. In order to explore whether rs1476679 is also associated with the LOAD risk in other ethnic groups, we recruited 2350 unrelated Northern Han Chinese subjects, which include 992 LOAD patients and 1358 healthy controls. Analysis of data from these subjects suggests that the rs1476679 polymorphism is significantly associated with the LOAD (genotype P = 0.017, allele P = 0.044). The logistic regression reveals the C allele at rs1476679 is a protective factor for LOAD in the dominant model (OR = 0.779, 95%CI = 0.659–0.921, Pc = 0.009) adjusting for gender, age and APOE ε4 status. Furthermore, rs1476679 can decrease the AD risk (Dominant: OR = 0.733, 95%CI = 0.607–0.884, Pc = 0.006; Additive: OR = 0.820, 95%CI = 0.708–0.950, Pc = 0.048) in APOE ε4 non-carriers after stratification. Furthermore, meta-analysis of 82525 individuals confirmed that rs1476679 within ZCWPW1 decreased the risk of LOAD (OR = 0.91, 95%CI = 0.89–0.94). To summarize, the rs1476679 polymorphism in ZCWPW1 is associated with LOAD in Northern Han Chinese population.
Oncotarget | 2017
Rui-Chun Lu; Wu Yang; Lin Tan; Fu-Rong Sun; Meng-Shan Tan; Wei Zhang; Hui-Fu Wang; Lan Tan
Genome-wide association studies (GWAS) have identified one single-nucleotide polymorphism (SNP) rs9271192 within HLA-DRB1 as a risk factor for Alzheimers disease (AD) in Caucasians. The effect of rs9271192 on AD needed to be verified in other ethnic cohorts. In order to evaluate the association between HLA-DRB1 rs9271192 polymorphism and late-onset AD (LOAD) in the Northern Han Chinese population, we recruited 982 LOAD patients and 1344 sex- and age-matched healthy controls. The results showed that HLA-DRB1 rs9271192 was associated with LOAD (genotype P = 0.015, allele P = 0.04). The results of logistic regression revealed the C allele homozygosity strongly increased the risk of LOAD under a recessive model in the total sample (P = 0.004, OR =2.069, 95% CI = 1.262–3.434). When these data were stratified by apolipoprotein E (APOE) ε4 status, the observed association was confined to APOE ε4 non-carriers (additive model: P=0.048, OR =1.191, 95% CI =1.001–1.417; recessive model: P < 0.001, OR = 2.601, 95% CI =1.519–4.566). Furthermore, meta-analysis after sensitive analysis confirmed that rs9271192 within HLA-DRB1 increased the risk of LOAD (OR = 1.12, 95% CI = 1.08–1.15). To summarize, the C allele in HLA-DRB1 rs9271192 may be an independent risk factor for LOAD.
Oncotarget | 2016
Jing Ma; Wei Zhang; Lin Tan; Hui-Fu Wang; Yu Wan; Fu-Rong Sun; Chen-Chen Tan; Jin-Tai Yu; Lan Tan
Membrane-spanning 4-domains, subfamily A, member 6A (MS4A6A) has been identified as susceptibility loci of Alzheimers disease (AD) by several recent genome-wide association studies (GWAS), whereas little is known about the potential roles of these variants in the brain structure and function of AD. In this study, we included a total of 812 individuals from the Alzheimers disease Neuroimaging Initiative (ADNI) database. Using multiple linear regression models, we found MS4A6A genotypes were strongly related to atrophy rate of left middle temporal (rs610932: Pc = 0.017, rs7232: Pc = 0.022), precuneus (rs610932: Pc = 0.015) and entorhinal (rs610932, Pc = 0.022) on MRI in the entire group. In the subgroup analysis, MS4A6A SNPs were significantly accerlated the percentage of volume loss of middle temporal, precuneus and entorhinal, especially in the MCI subgroup. These findings reveal that MS4A6A genotypes affect AD specific brain structures which supported the possible role of MS4A6A polymorphisms in influencing AD-related neuroimaging phenotypes.
Oncotarget | 2016
Qiu-Yue Zhang; Hui-Fu Wang; Zhan-Jie Zheng; Ling-Li Kong; Meng-Shan Tan; Chen-Chen Tan; Wei Zhang; Zi-Xuan Wang; Lin Tan; Jin-Tai Yu; Lan Tan
A recent meta-analysis of genome-wide association studies (GWAS) in population of Caucasian identified a single nucleotide polymorphism (SNP) rs17125944 in the FERMT2 gene as a new susceptibility locus for late-onset Alzheimers disease (LOAD). In order to validate the association of the rs17125944 polymorphism with LOAD risk in the northern Han Chinese, we recruited a case–control study of 2338 Han Chinese subjects (984 cases and 1354 age- and gender-matched controls). Our results demonstrated that there was no significant association between the rs17125944 polymorphism and LOAD (genotype: P = 0.953; allele: P = 0.975). Furthermore, no significant differences were observed in alleles and genotypes distribution after stratification by apolipoprotein E (APOE) ε4 and multivariate logistic regression analysis. We also performed a meta-analysis in 81908 individuals. The meta-analysis showed that the C allele is the risk factor for LOAD in Caucasian group (OR = 1.15, 95 % CI = 1.10–1.20) and combined population (OR = 1.13, 95 % CI = 1.08–1.19). While in Chinese population, the C allele is not associated with increased risk of LOAD (OR = 1.07, 95 % CI = 0.89–1.28). In conclusion, our study showed that the rs17125944 polymorphism in FERMT2 gene might not be association with LOAD in northern Han Chinese population.
Oncotarget | 2016
Shan-Shan Tang; Hui-Fu Wang; Wei Zhang; Ling-Li Kong; Zhan-Jie Zheng; Meng-Shan Tan; Chen-Chen Tan; Zi-Xuan Wang; Lin Tan; Teng Jiang; Jin-Tai Yu; Lan Tan
The myocyte enhancer factor (MEF2) family of transcription factors plays a vital role in memory and learning due to its functions in regulating synapse number and reducing dendritic spines. Myocyte enhancer factor 2 C (MEF2C) is regarded as modulator of amyloid-protein precursor (APP) proteolytic processing, in which amyloid-β (Aβ) is produced. A common single nucleotide polymorphism (SNP, rs190982) in MEF2C gene was identified to be related to late-onset Alzheimers disease (LOAD) in Caucasians in a large meta-analysis of genome-wide association studies (GWAS). Here, we recruited unrelated 984 LOAD patients and 1348 healthy controls matched for gender and age to ascertain whether the rs190982 polymorphism is related to LOAD in Han Chinese. No difference in the genotype and allele distributions of the MEF2C rs190982 polymorphism was found between LOAD cases and healthy controls (genotype: P = 0.861; allele: P = 0.862), even after stratification for APOE ε4 allele as well as statistical adjustment for age, gender and APOE ε4 status. Furthermore, the meta-analysis in 4089 Chinese individuals did not detect the association of rs190982 within MEF2C with the risk for LOAD (OR = 1.03, 95%CI = 0.90-1.18). Overall, the current evidence did not support the relation between rs190982 polymorphism within MEF2C and the LOAD risk in Northern Han Chinese.
Oncotarget | 2016
Xiao-Long Chang; Lin Tan; Meng-Shan Tan; Hui-Fu Wang; Chen-Chen Tan; Wei Zhang; Zhan-Jie Zheng; Ling-Li Kong; Zi-Xuan Wang; Teng Jiang; Jin-Tai Yu; Lan Tan
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) acts as a potential genetic modifier for Alzheimers disease (AD). Previous reports identified that HMGCR rs3846662 polymorphism is associated with biosynthesis of cholesterol in AD pathology. In order to assess the involvement of the HMGCR polymorphism in the risk of late-onset AD (LOAD) in northern Han Chinese, we performed a case–control study of 2334 unrelated subjects (984 cases and 1350 age- and gender-matched controls) to evaluate the genotype and allele distributions of the HMGCR rs3846662 with LOAD. The genotype distribution (GG, AG, AA) of rs3846662 was significantly different between LOAD patients and controls (P = 0.003), but the allele distribution did not reach a significant difference (P = 0.614). After adjusting for age, gender and the APOE ε4 status, the minor A allele of rs3846662 was validated as a protective factor for LOAD in dominant model (OR = 0.796, P = 0.02, 95% CI = 0.657–0.965). Interestingly, we observed rs3846662 polymorphism was only significantly associated with LOAD in APOE ε4 non-carriers (OR = 0.735, P = 0.005, 95% CI = [0.593, 0.912]). In conclusion, our study demonstrates A allele of HMGCR rs3846662 acts as a protective factor for LOAD in northern Han Chinese.
Oncotarget | 2016
Shu-Lei Liu; Xue-Chun Wang; Meng-Shan Tan; Hui-Fu Wang; Wei Zhang; Zi-Xuan Wang; Jin-Tai Yu; Lan Tan
Recently, a large meta-analysis of five genome wide association studies (GWAS) has identified that a novel single nucleotide polymorphism (SNP) rs2718058, adjacent to gene NME8 on chromosome 7p14.1, was associated with late-onset Alzheimers disease (LOAD) in Caucasians. However, the effect of rs2718058 on other populations remains unclear. In order to explore the relationship between rs2718058 and LOAD risk in a North Han Chinese population, we recruited 984 LOAD cases and 1354 healthy controls that matched for sex and age in this study. The results showed no significant differences in the genotypic or allelic distributions of rs2718058 polymorphism between LOAD cases and healthy controls, even though after stratification for APOE ε4 status and statistical adjustment for age, gender and APOE ε4 status (p > 0.05). However, a meta-analysis conducted in a sample of 82513 individuals confirmed a significant association between SNP rs2718058 and LOAD risk (OR = 1.08, 95%CI = 1.05–1.11) in the whole population. But there was still no positive results in Chinese subgroup (OR = 1.05, 95%CI = 0.93–1.17). In conclusion, the rs2718058 near gene NME8 on chromosome 7p14.1 might not play a major role in the genetic predisposition to LOAD in the North Han Chinese.
Oncotarget | 2016
Hua Jing; Jun-Xia Zhu; Hui-Fu Wang; Wei Zhang; Zhan-Jie Zheng; Ling-Li Kong; Chen-Chen Tan; Zi-Xuan Wang; Lin Tan; Lan Tan
Inositol polyphosphate-5-phosphatase (INPP5D) was reported to be associated with Alzheimers disease (AD) through modulating the inflammatory process and immune response. A recent genome-wide association study discovered a new locus single nucleotide polymorphism (SNP, rs35349669) of INPP5D which was significantly associated with susceptibility to late-onset Alzheimers disease (LOAD) in Caucasians. In this study, we investigated the relations between the INPP5D polymorphism rs35349669 and LOAD in Han Chinese population comprising 984 LOAD cases and 1352 healthy controls being matched for age and gender. Our results showed no obvious differences in the genotypic or allelic distributions of rs35349669 polymorphism between LOAD cases and healthy controls (genotype: p = 0.167; allele: p = 0.094). Additionally, when these data were stratified by APOEε4 status, there are still no evident differences in the genotypic or allelic distributions in APOEε4 carriers (p > 0.05). Furthermore, meta-analysis of 81964 individuals confirmed that rs35349669 was significantly associated with the risk for LOAD (OR=1.08, 95%CI=1.06-1.11), but the results remained negative in Chinese subgroup (OR=0.77, 95%CI=0.53-1.13). Overall, the current evidence did not indicate that INPP5D rs35349669 polymorphism play a role in the genetic predisposition to LOAD in Chinese population.
Oncotarget | 2016
Lei Cao; Hui-Fu Wang; Lin Tan; Fu-Rong Sun; Meng-Shan Tan; Chen-Chen Tan; Teng Jiang; Jin-Tai Yu; Lan Tan
Alzheimers disease (AD) has become a considerable public health issue. The mechanisms underlying AD onset and progression remain largely unclear. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is a strong functional AD candidate gene because it encodes part of the statin-binding domain of the enzyme, which serves as the rate-limiting step in cholesterol synthesis in all mammalian cells. Here, we evaluated the potential role of HMGCR (rs3846662) in AD-related pathology by assessing neuroimaging biomarkers. We enrolled in 812 subjects from the Alzheimers disease Neuroimaging Initiative dataset. In general, it is possible that HMGCR (rs3846662) could be involved in preventing the atrophy of right entorhinal (P=0.03385) and left hippocampus (P=0.01839) in the follow-up research of two years. Whats more, it lowered the drop rate of glucose metabolism in right temporal. We then further validated them in the AD, mild cognitive impairment (MCI), normal control (NC) sub-groups. All the results in the MCI groups confirmed the association. The results of our study indicated that HMGCR (rs3846662) plays a vital role in AD pathology mainly by influencing brain structure and glucose metabolism during AD progression.