Hui Hwang Goh
Universiti Tun Hussein Onn Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui Hwang Goh.
IEEE Transactions on Industrial Electronics | 2016
Sze Sing Lee; Bing Chu; Nik Rumzi Nik Idris; Hui Hwang Goh; Yeh En Heng
This paper presents a boost-multilevel inverter design with integrated battery energy storage system for standalone application. The inverter consists of modular switched-battery cells and a full-bridge. It is multifunctional and has two modes of operation: 1) the charging mode, which charges the battery bank and 2) the inverter mode, which supplies ac power to the load. This inverter topology requires significantly less power switches compared to conventional topology such as cascaded H-bridge multilevel inverter, leading to reduced size/cost and improved reliability. To selectively eliminate low-order harmonics and control the desired fundamental component, nonlinear system equations are represented in fitness function through the manipulation of modulation index and the genetic algorithm (GA) is employed to find the optimum switching angles. A seven-level inverter prototype is implemented and experimental results are provided to verify the feasibility of the proposed inverter design.
international conference on environment and electrical engineering | 2010
Hui Hwang Goh; Boon Ching Kok
This paper proposes a methodology for the load shedding scheme for electrical power system by using the Analytic Hierarchy Process (AHP). The process AHP is a structured technique for dealing with complex decisions. In this paper, an effective method that can solve a multiple criteria and multiple objective decision-making problems was introduced to the load shedding scheme in electrical power system problem in order to gain a scientific and objective maintenance scheduling. Firstly an AHP model is built up on the base of analyzing correlative factors with an example given to indicate how the AHP is applied.
Nanotechnology | 2017
WeiWen Wong; Hin Yong Wong; A. Borhan M. Badruzzaman; Hui Hwang Goh; Mukter Zaman
Recently, increasing research efforts have been made to exploit the enormous potential of nanotechnology and nanomaterial in the application of arsenic removal from water. As a result, there are myriad of types of nanomaterials being developed and studied for their arsenic removal capabilities. Nevertheless, challenges such as having a complete understanding of the material properties and removal mechanism make it difficult for researchers to engineer nanomaterials that are best suited for specific water treatment applications. In this review paper, a comprehensive review will be conducted on several selected categories of nanomaterials that possess promising prospects in arsenic removal application. The synthesis process, material properties, as well as arsenic removal performance and removal mechanisms of each of these nanomaterials will be discussed in detail. Fe-based nanomaterials, particularly iron oxide nanoparticles, have displayed advantages in arsenic removal due to their super-paramagnetic property. On the other hand, TiO2-based nanomaterials are the best candidates as photocatalytic arsenic removal agents, having been reported to have more than 200-fold increase in adsorption capacity under UV light irradiation. Zr-based nanomaterials have among the largest BET active area for adsorption-up to 630 m2 g-1-and it has been reported that amorphous ZrO2 performs better than crystalline ZrO2 nanoparticles, having about 1.77 times higher As(III) adsorption capacity. Although Cu-based nanomaterials are relatively uncommon as nano-adsorbents for arsenic in water, recent studies have demonstrated their potential in arsenic removal. CuO nanoparticles synthesized by Martinson et al were reported to have adsorption capacities up to 22.6 mg g-1 and 26.9 mg g-1 for As(V) and As(III) respectively. Among the nanomaterials that have been reviewed in this study, Mg-based nanomaterials were reported to have the highest maximum adsorption capacities for As(V) and As(III), at 378.79 mg g-1 and 643.84 mg g-1 respectively. By combining desired properties of different nanomaterials, composite nanomaterials can be made that have superior potential as efficient arsenic removal agents. Particularly, magnetic composite nanomaterials are interesting because the super-paramagnetic property, which allows efficient separation of nano-adsorbents in water, and high adsorption capacities, could be achieved simultaneously. For instance, Fe-Mn binary oxide nanowires have shown promising As(III) adsorption capacity at 171 mg g-1. Generally, nanomaterials used for arsenic removal face severe degradation in performance in the presence of competing ions in water, especially phosphate ions. This study will contribute to future research in developing nanomaterials used for arsenic removal that are highly efficient, environmentally friendly and cost-effective by providing a thorough, structured and detailed review on various nanomaterial candidates that have promising potential.
international conference on environment and electrical engineering | 2010
Hui Hwang Goh; Boon Ching Kok
Nowadays advanced technology in producing powerful equipments or devices in engineering sector not only help engineer from various fields such as mills and construction to rectify problems instantly but in more relevant and reliable ways. For example, microprocessor protection relay in the market, which is a type of protection relay that can be linked up with profibus, modbus and etc to centralize control system for supervision, control, monitoring and data collection or storage purposes to enable end users to monitor and observe the system easily. This type of centralized integration concept is the future development trend, which will benefit end users.
WIT Transactions on Ecology and the Environment | 2014
H. G. Chua; Boon Ching Kok; Hui Hwang Goh
The piezoelectric cymbal transducer (PCT) is auspiciously identified as the best design for piezoelectric energy harvesting, particularly in high stress conditions. It is designed to harvest the ambient mechanical stress and vibration that ubiquitously exist in our environment into electrical energy. In this paper, a PCT structure is examined for its energy harvesting capabilities in both, mechanical and electrical environment using COMSOL FEA (Finite Element Analysis) simulation software. The PCT design structure comprises of piezoelectric disk slotted in between two dome-shaped metal end caps and slip rings. The shallow cavity depth allows the mechanical force to magnify the distributed circumferential force on the piezoelectric disk. A load resistor is introduced to the finite element method (FEM) via PSPICE netlist as to calculate the harvested power of the PCT. It has been discovered that the different metal end caps materials, the dimension of the piezoelectric disk and end caps with various electrical resistive load had significant corresponding effects on the power generation of the PCT. A total generated power of 0.46mW has been obtained from a PCT dimension of 32mm diameter wide along with a 0.3 thickness end cap under a 50N force across 3M load resistance.
PROCEEDINGS OF THE FOURTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION | 2011
Hui Hwang Goh; Boon Ching Kok; S. W. Lee; A. A. Mohd Zin
Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. In particular, the breakdown of the generator would cause other generators to be overloaded. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. In order to determine the sequences of load shedding scheme, analytic hierarchy process (AHP) is introduced. Analytic Hierarchy Process is one of the multi‐criteria decision making methods. By using this method, the priority of the load can be determined. This paper presents the theory of the alternative methods to choose the load priority in load shedding scheme for a large pulp mill.
international conference on artificial intelligence | 2014
Kenneth Tze Kin Teo; Pei Yi Lim; Bih Lii Chua; Hui Hwang Goh; Min Keng Tan
This paper presents the particle swarm optimization based maximum power point tracking (MPPT) approach for maximizing output power of photovoltaic (PV) array under partially shaded conditions (PSC). During PSC, the P-V characteristic becomes more complex with multiple maximum power points (MPP). Most of the conventional MPPT approaches will be trapped at the local MPP and hence limiting the maximum power generation. As such, the investigation on particle swarm optimization (PSO) based MPPT is carried out to maximize the PV generated power principally under PSC operation. The performances of conventional MPPT approach and the proposed PSO-MPPT are investigated particularly on the transient and steady state responses under various shaded conditions. The simulation results show that the PSO-MPPT is able to facilitate the PV array to reach the global MPP as well as to assist the PV array to produce more stable output power compared to the conventional perturb and observe (P&O) algorithm.
Archive | 2013
S. W. Lee; Boon Ching Kok; Kai Chen Goh; Hui Hwang Goh
The wind speed prediction in Kudat, Malaysia had been done by using Mycielski-1 approach and K-mean clustering statistical method. There is some improvement in obtaining the random number of Mycielski-1. Besides, the comparison of K-means clustering with the optimal number of K is presented in this paper. The wind prediction is important to study a favorable site’s wind potential. The prediction is based on 3 years history data provided by Meteorology Department of Malaysia and 1 year data as the reference to check the accuracy of both algorithms. The basic concept of Mycielski-1 algorithm is to predict the next value by looking to history data. Meanwhile, the K-means clustering can group the values with similar mean into the same group, and the prediction can be done by getting the probability of occurrence. The result shows the prediction of Mycielski-1 algorithm and K-means clustering are promising. The wind speed is predicted in order to obtain the mean power for energy planning.
Indonesian Journal of Electrical Engineering and Computer Science | 2018
Kai Chen Goh; Sy Yi Sim; Hui Hwang Goh; K. Bilal; T.H. Sam; T.Y. Teoh; Jia Sin Tey
Received Mar 3, 2018 Revised Apr 11, 2018 Accepted Apr 21, 2018 Paintball has gained a huge popularity in Malaysia with growing number of tournaments organized nationwide. Currently, Ideal Pro Event, one of the paintball organizer found difficulties to pair a suitable opponent to against one another in a tournament. This is largely due to the manual matchmaking method that only randomly matches one team with another. Consequently, it is crucial to ensure a balanced tournament bracket where eventual winners and losers not facing one another in the very first round. This study proposes an intelligent matchmaking using Particle Swarm Optimization (PSO) and tournament management system for paintball organizers. PSO is a swarm intelligence algorithm that optimizes problems by gradually improving its current solutions, therefore countenancing the tournament bracket to be continually improved until the best is produced. Indirectly, through the development of the system, it is consider as an intelligence business idea since it able to save time and enhance the company productivity. This algorithm has been tested using 3 size of population; 100, 1000 and 10,000. As a result, the speed of convergence is consistent and has not been affected through big population.N. N. S. Abdul Rahman, N.M. Saad, A. R. Abdullah, M. R. M. Hassan, M. S. S. M. Basir, N. S. M. Noor 1,2,4,6Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 2,3Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3,5Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, MalaysiaLight rail transit (LRT), or fast tram is urban public transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. Indonesia as one of developing countries has been developed the LRT in two cities of Indonesia, Palembang and Jakarta. There are opinions toward the development of LRT, negative and positive opinions. To reveal the level of LRT development acceptance, this research uses machine learning approach to analyze the data which is gathered through social media. By conducting this paper, the data is modeled and classified in order to analyze the social sentiment towards the LRT development.Mohamad, S., Nasir, F.M., Sunar, M.S., Isa, K., Hanifa, R.M., Shah, S.M., Ribuan, M.N., Ahmad, A. 1,4,6,7,8Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 1,2,3UTM-IRDA Digital Media Centre, Media and Game Innovation Centre of Excellence, Universiti Teknologi Malaysia, Johor, Malaysia 1,2,3Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia 5Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 6Research Centre for Applied Electromagnetics, Universiti Tun Hussein Onn Malaysia, Johor, MalaysiaReceived Jan 31, 2018 Revised Apr 21, 2018 Accepted Apr 30, 2018 Bluetooth is an emerging mobile ad-hoc network that accredits wireless communication to connect various short range devices. A single hop network called piconet is the basic communication topology of bluetooth which allows only eight active devices for communication among them seven are active slaves controlled by one master. Multiple piconets are interconnected through a common node, known as Relay, to form a massive network called as Scatternet. It is obvious that the performance of Scatternet scheduling is highly dependent and directly proportionate with the performance of the Relay node. In contrary, by reducing the number of Relays, it may lead to poor performance, since every Relay has to perform and support several piconet connections. The primary focus of this study is to observe the performance metrics that affects the inter-piconet scheduling since the Relay node’s role is like switch between multiple piconets. In this paper, we address and analyze the performance issues to be taken into consideration for efficient data flow in Scatternet based on Relay node.
Indonesian Journal of Electrical Engineering and Computer Science | 2018
Alvin Lim; Sy Yi Sim; Nickholas Anting; Joewono Prasetijo; T. I. T Noor Hasanah; Hui Hwang Goh; Yonis. M. Buswig; C.C. Kang
Received Mar 3, 2018 Revised Apr 11, 2018 Accepted Apr 21, 2018 Paintball has gained a huge popularity in Malaysia with growing number of tournaments organized nationwide. Currently, Ideal Pro Event, one of the paintball organizer found difficulties to pair a suitable opponent to against one another in a tournament. This is largely due to the manual matchmaking method that only randomly matches one team with another. Consequently, it is crucial to ensure a balanced tournament bracket where eventual winners and losers not facing one another in the very first round. This study proposes an intelligent matchmaking using Particle Swarm Optimization (PSO) and tournament management system for paintball organizers. PSO is a swarm intelligence algorithm that optimizes problems by gradually improving its current solutions, therefore countenancing the tournament bracket to be continually improved until the best is produced. Indirectly, through the development of the system, it is consider as an intelligence business idea since it able to save time and enhance the company productivity. This algorithm has been tested using 3 size of population; 100, 1000 and 10,000. As a result, the speed of convergence is consistent and has not been affected through big population.N. N. S. Abdul Rahman, N.M. Saad, A. R. Abdullah, M. R. M. Hassan, M. S. S. M. Basir, N. S. M. Noor 1,2,4,6Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 2,3Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3,5Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, MalaysiaLight rail transit (LRT), or fast tram is urban public transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. Indonesia as one of developing countries has been developed the LRT in two cities of Indonesia, Palembang and Jakarta. There are opinions toward the development of LRT, negative and positive opinions. To reveal the level of LRT development acceptance, this research uses machine learning approach to analyze the data which is gathered through social media. By conducting this paper, the data is modeled and classified in order to analyze the social sentiment towards the LRT development.Mohamad, S., Nasir, F.M., Sunar, M.S., Isa, K., Hanifa, R.M., Shah, S.M., Ribuan, M.N., Ahmad, A. 1,4,6,7,8Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 1,2,3UTM-IRDA Digital Media Centre, Media and Game Innovation Centre of Excellence, Universiti Teknologi Malaysia, Johor, Malaysia 1,2,3Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia 5Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 6Research Centre for Applied Electromagnetics, Universiti Tun Hussein Onn Malaysia, Johor, MalaysiaReceived Jan 31, 2018 Revised Apr 21, 2018 Accepted Apr 30, 2018 Bluetooth is an emerging mobile ad-hoc network that accredits wireless communication to connect various short range devices. A single hop network called piconet is the basic communication topology of bluetooth which allows only eight active devices for communication among them seven are active slaves controlled by one master. Multiple piconets are interconnected through a common node, known as Relay, to form a massive network called as Scatternet. It is obvious that the performance of Scatternet scheduling is highly dependent and directly proportionate with the performance of the Relay node. In contrary, by reducing the number of Relays, it may lead to poor performance, since every Relay has to perform and support several piconet connections. The primary focus of this study is to observe the performance metrics that affects the inter-piconet scheduling since the Relay node’s role is like switch between multiple piconets. In this paper, we address and analyze the performance issues to be taken into consideration for efficient data flow in Scatternet based on Relay node.