Hui Ji
China Pharmaceutical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui Ji.
International Immunopharmacology | 2015
Tong Chen; Yi Mou; Jiani Tan; Linlin Wei; Yixue Qiao; Tingting Wei; Pengjun Xiang; Sixun Peng; Yihua Zhang; Zhangjian Huang; Hui Ji
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.
International Immunopharmacology | 2015
Qi Jiang; Min Yi; Qianqian Guo; Ciman Wang; Huimin Wang; Shanshan Meng; Chao Liu; Yeliu Fu; Hui Ji; Tong Chen
The purpose of this study was to investigate the protective effect of PD against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its potential mechanism. In vivo, PD and dexamethasone were intraperitoneally administered 1h before LPS stimulation. Then, mice were sacrificed at 6h post-LPS stimulation. Neutrophil number, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF) were determined, as well as lung wet to dry ratio (W/D) and polymorphonuclear (MPO) activity. The protein expressions of Toll like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), IL-1R-associated kinases 1 (IRAK1), IRAK4, inhibitor of nuclear factor kappa-B kinase (IKK)α, p-IKKα, IKKβ, p-IKKβ, inhibitor of NF-κB (IκBα), p-IκBα and NF-κB in lung tissues were assessed. Besides, we detected the IL-6, IL-1β, IL-8, TNF-α levels and TLR4, MyD88, NF-κB protein expressions in LPS-induced BEAS-2B cells. Consequently, PD significantly inhibited the levels of W/D, MPO, neutrophils number, TNF-α, IL-6, IL-1β and reversed TLR4-MyD88-NF-κB signaling pathway in lung tissues. In vitro assays, PD effectively negatively mediated the inflammatory cytokines and ameliorated the high expressions of TLR4, MyD88, NF-κB caused by LPS simulation in Human bronchial epithelial BEAS-2B cells. This study indicated that PD played a protective role in LPS-induced ALI and BEAS-2B cells. The results supported further study of PD as potential candidate for acute lung injury.
European Journal of Pharmacology | 2012
Ruhui Yang; Lina Yang; Xiangchun Shen; Wenyuan Cheng; Bohua Zhao; Kazi Hamid Ali; Zhiyu Qian; Hui Ji
Crocetin, a carotenoid compound, has been shown to reduce expression of inflammation and inhibit the production of reactive oxygen species. In the present study, the effect of crocetin on acute lung injury induced by lipopolysaccharide (LPS) was investigated in vivo. In the mouse model, pretreatment with crocetin at dosages of 50 and 100 mg/kg reduced the LPS-induced lung oedema and histological changes, increased LPS-impaired superoxide dismutase (SOD) activity, and decreased lung myeloperoxidase (MPO) activity. Furthermore, treatment with crocetin significantly attenuated LPS-induced mRNA and the protein expressions of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and tumour necrosis factor-α (TNF-α) in lung tissue. In addition, crocetin at different dosages reduced phospho-IκB expression and NF-κB activity in LPS-induced lung tissue alteration. These results indicate that crocetin can provide protection against LPS-induced acute lung injury in mice.
Pharmacology | 2008
Xiao-Le Xu; Xiang-Jian Chen; Hui Ji; Ping Li; Yun-Yun Bian; Di Yang; Jindan Xu; Zhiping Bian; Jinan Zhang
Although astragaloside IV, a saponin isolated from Astragalus membranaceus, has been shown to protect the myocardium against ischemia/reperfusion injury, its effect on the status of sarcoplasmic reticulum (SR) Ca2+ transport in the injured myocardium remains largely unknown. In this study, we investigated whether in cultured cardiomyocytes subjected to hypoxia and reoxygenation (H/R) administration of astragaloside IV during H/R attenuates the myocardial cell injury and prevents changes in Ca2+ handling activities and gene expression of SR Ca2+ pump. Cultured cardiomyocytes from neonatal rats were exposed to 6 h of hypoxia followed by 3 h of reoxygenation. Myocyte injury was determined by the release of cardiac troponin I in supernatant. Astragaloside IV significantly inhibited cardiac troponin I release after H/R in a dose-dependent manner. The diastolic [Ca2+]i measured with Fura-2/AM was significantly increased after reoxygenation. Astragaloside IV prevented the rise of diastolic [Ca2+]i and the depression of caffeine-induced Ca2+ transients caused by H/R. Furthermore, the observed depressions in SR Ca2+-ATPase activity as well as the mRNA and protein expression of SR Ca2+-ATPase in hypoxic-reoxygenated cardiomyocytes were attenuated by astragaloside IV treatment. These results suggest that the beneficial effect of astragaloside IV in H/R-induced injury may be related to normalization of SR Ca2+ pump expression and, thus, may prevent the depression in SR Ca2+ handling.
Journal of Medicinal Chemistry | 2011
Yong Ling; Xiaolei Ye; Zhenzhen Zhang; Yihua Zhang; Yisheng Lai; Hui Ji; Sixun Peng; Jide Tian
Novel furoxan-based nitric oxide (NO) releasing derivatives (8a-p) of farnesylthiosalicylic acid (FTS) were synthesized. Compound 8l displayed the strongest inhibition on the proliferation of human hepatocellular carcinoma (HCC) cells in vitro, superior to FTS, sorafenib, and furoxan moiety, selectively induced high frequency of HCC cell apoptosis, and produced high levels of NO in HCC cells but not in nontumor liver cells. Furthermore, 8l exhibited low acute toxicity to mice and significantly inhibited the growth of HCC tumors in vivo and the Ras-related signaling in the tumors. Therefore, our novel findings may provide a new framework for the design of new NO-releasing furoxan/FTS hybrids for the intervention of human HCC.
Journal of Medicinal Chemistry | 2013
Junjie Fu; Ling Liu; Zhangjian Huang; Yisheng Lai; Hui Ji; Sixun Peng; Jide Tian; Yihua Zhang
A series of hybrids from O(2)-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid (OA) were designed, synthesized, and biologically evaluated as novel nitric oxide (NO)-releasing prodrugs that could be activated by glutathione S-transferase π (GSTπ) overexpressed in a number of cancer cells. It was discovered that the most active compound, 21, released high levels of NO selectively in HCC cells but not in the normal cells and exhibited potent antiproliferative activity in vitro as well as remarkable tumor-retarding effects in vivo. Compared with the reported GSTπ-activated prodrugs JS-K and PABA/NO, 21 exhibited remarkably improved stability in the absence of GSTπ. Importantly, the decomposition of 21 occurred in the presence of GSTπ and was much more effective than in glutathione S-transferase α. Additionally, 21 induced apoptosis in HepG2 cells by arresting the cell cycle at the G2/M phase, activating both the mitochondrion-mediated pathway and the MAPK pathway and enhancing the intracellular production of ROS.
European Journal of Pharmacology | 2012
Ling Liu; Junjie Fu; Tingting Li; Ran Cui; Jingjing Ling; Xing Yu; Hui Ji; Yihua Zhang
O(2)-(2,4-dinitro-5-{[2-(12-en-28-β-D- galactopyranosyl-oleanolate-3-yl) -oxy-2-oxoethyl]amino}phenyl)1-(N-hydroxyethylmethylamino)diazen-1-ium-1,2- diolate (NG), a novel PABA/NO-based derivative of oleanolic acid (OA), has been found to show potent antitumor activity both in vivo and in vitro. In the present study, NG could significantly reduce tumor volume and weight in the H22 solid tumor mouse model. Meanwhile, NG showed selective effects on the HepG2 cells including NO generation, cytotoxic effect and apoptosis, which were prevented by hemoglobin (NO scavenger). Moreover, NG-induced apoptosis of HepG2 cells was characteristic of intracellular reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (Δψm) and enhanced Bax-to-Bcl-2 ratio. The release of apoptotic inducing factor (AIF) and cytochrome c (Cyt c) from mitochondria and the activation of caspase-3, 9 were also detected, indicating that NG may induce apoptosis through a mitochondrial-mediated pathway. Simultaneously, NG treatment could lead to the activation of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK but not ERK1/2. Treatment with SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38) prior to NG was found to reverse NG-induced apoptosis. Moreover, it was found that antioxidant N-acetylcysteine (NAC) blocked the induction of apoptosis and partly reversed the activation of JNK and p38, up-regulation of Bax, down-regulation of Bcl-2 and the activation of caspase-3 in NG-treated cells. Taking together, these findings suggest that NO can be released from NG, which induces apoptosis through a ROS/MAPK-mediated mitochondrial pathway.
Atherosclerosis | 2013
Bo Wei; Mei-Gui You; Jingjing Ling; Linlin Wei; Kai Wang; Wen-Wen Li; Tong Chen; Qian-ming Du; Hui Ji
OBJECTIVE Myocardial infarction (MI) is a cause of high morbidity and mortality in the world. Sodium tanshinone IIA sulphonate (STS) has been well used in Oriental medicine for treating cardiovascular diseases, however, the underlying mechanisms remain unclear. Alterations of circulating lipid profiles, increased fatty acid β-oxidation and oxidative stress play most important roles in the pathogenesis of MI. The present study aims to elucidate whether STS possesses cardioprotective effect against MI driven by isoproterenol (ISO), and to investigate its potential mechanisms of action. METHODS MI was induced by subcutaneous injection of ISO (85 mg/kg at interval of 24 h for 2 consecutive days) to rats. The rats were randomly divided into 6 groups: (1) control; (2) ISO; (3) STS (16 mg/kg) +control; (4-6) STS (16, 8, 4 mg/kg) +ISO. RESULTS Our study showed that STS could ameliorate cardiac dysfunction and variation of myocardial zymogram, up-regulate antioxidant systems, and maintain the levels of circulating lipids driven by supramaximal doses ISO as well. Moreover, modulation of redox-sensitive extracellular signal-regulated kinase1/2 (ERK1/2)/Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC)/carnitine palmitoyltransferase (CPT) 1 pathways were involved in STS induced cardioprotection. CONCLUSIONS STS exerts strong favorable cardioprotective action. Additionally, the properties of STS, such as anti-dyslipidemia, anti-oxidant and inhibition of fatty acid β-oxidation, may be the mechanisms underlying the observed results.
Bioorganic & Medicinal Chemistry Letters | 2010
Yisheng Lai; Lihong Shen; Zhenzhen Zhang; Wenqing Liu; Yihua Zhang; Hui Ji; Jide Tian
A series of novel furoxan-based nitric oxide (NO)-releasing derivatives of glycyrrhetinic acid (GA) were designed, synthesized, and evaluated for their in vitro cytotoxicity against human hepatocellular carcinoma (HCC) and non-tumor liver cells. Five furoxan/GA hybrids, 7b-d, 7f, and 7g, displayed potent cytotoxicity against HCC cells (IC(50): 0.25-1.10 μM against BEL-7402 cells and 1.32-6.78 μM against HepG2 cells), but had a little effect on the growth of LO2 cells, indicating that these compounds had selective cytotoxicity against HCC cells. Furthermore, these compounds produced high concentrations of NO in HCC cells, but low in LO2 cells and treatment with hemoglobin partially reduced the cytotoxicity of the hybrid in HCC cells. Apparently, the high concentrations of NO produced by NO donor moieties and the bioactivity of GA synergistically contribute to the cytotoxicity, but the NO is a major player against HCC cells in vitro. Potentially, our findings may aid in the design of new chemotherapeutic reagents for the intervention of human HCC at clinic.
Bioorganic & Medicinal Chemistry Letters | 2010
Yisheng Lai; Lin Ma; Wenxing Huang; Xing Yu; Yihua Zhang; Hui Ji; Jide Tian
Fourteen new 3-[4-(amino/methylsulfonyl)phenyl]methylene-indolin-2-one derivatives were synthesized. Six compounds displayed potent inhibitory activities against COX-1/2 and 5-LOX with IC(50) in the range of 0.10-9.87 μM. Particularly, 10f exhibited well balanced inhibitory action on these enzymes (IC(50)=0.10-0.56 μM). More importantly, 10f and several other compounds had comparable or stronger anti-inflammatory and analgesic activities, but better gastric tolerability in vivo, as compared with darbufelone mesilate and tenidap sodium. Therefore, our findings may aid in the design of new and safe anti-inflammatory reagents for the intervention of painful inflammatory diseases, such as rheumatoid arthritis at clinic.