Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui Lin Pan is active.

Publication


Featured researches published by Hui Lin Pan.


Journal of Biological Chemistry | 2009

Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel β subunit

Zi Zhen Wu; De Pei Li; Shao Rui Chen; Hui Lin Pan

Aminopyridines such as 4-aminopyridine (4-AP) are widely used as voltage-activated K+ (Kv) channel blockers and can improve neuromuscular function in patients with spinal cord injury, myasthenia gravis, or multiple sclerosis. Here, we present novel evidence that 4-AP and several of its analogs directly stimulate high voltage-activated Ca2+ channels (HVACCs) in acutely dissociated neurons. 4-AP, 4-(aminomethyl)pyridine, 4-(methylamino)pyridine, and 4-di(methylamino)pyridine profoundly increased HVACC, but not T-type, currents in dissociated neurons from the rat dorsal root ganglion, superior cervical ganglion, and hippocampus. The widely used Kv channel blockers, including tetraethylammonium, α-dendrotoxin, phrixotoxin-2, and BDS-I, did not mimic or alter the effect of 4-AP on HVACCs. In HEK293 cells expressing various combinations of N-type (Cav2.2) channel subunits, 4-AP potentiated Ca2+ currents primarily through the intracellular β3 subunit. In contrast, 4-AP had no effect on Cav3.2 channels expressed in HEK293 cells. Furthermore, blocking Kv channels did not mimic or change the potentiating effects of 4-AP on neurotransmitter release from sensory and motor nerve terminals. Thus, our findings challenge the conventional view that 4-AP facilitates synaptic and neuromuscular transmission by blocking Kv channels. Aminopyridines can directly target presynaptic HVACCs to potentiate neurotransmitter release independent of Kv channels.


Journal of Biological Chemistry | 2012

N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain

Hongyi Zhou; Shao Rui Chen; Hee Sun Byun; Hong Chen; Li Li; Hee Dong Han; Gabriel Lopez-Berestein; Anil K. Sood; Hui Lin Pan

Background: Reduced K+-Cl− cotransporter-2 (KCC2) function in spinal cords contributes to diminished synaptic inhibition and neuropathic pain development. Results: Nerve injury causes KCC2 protein breakdown by stimulating glutamate receptors and calcium-dependent calpain activity in spinal cords. Conclusion: Increased KCC2 proteolysis diminishes synaptic inhibition to maintain chronic neuropathic pain. Significance: Understanding mechanisms of diminished synaptic inhibition is essential for improving neuropathic pain treatments. Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (Eglycine) in spinal dorsal horn neurons. Blocking glutamate N-methyl-d-aspartate (NMDA) receptors normalizes synaptic inhibition, Eglycine, and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing Eglycine. Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain.


Journal of Pharmacology and Experimental Therapeutics | 2009

Sensing of Blood Pressure Increase by Transient Receptor Potential Vanilloid 1 Receptors on Baroreceptors

Hao Sun; De Pei Li; Shao Rui Chen; Walter N. Hittelman; Hui Lin Pan

The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis.


Nature Neuroscience | 2015

G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition

Geoffroy Laumet; Judit Garriga; Shao Rui Chen; Yuhao Zhang; De Pei Li; Trevor M. Smith; Yingchun Dong; Jaroslav Jelinek; Matteo Cesaroni; Jean-Pierre Issa; Hui Lin Pan

Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K+ channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. We found that nerve injury increased dimethylation of Lys9 on histone H3 (H3K9me2) at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect levels of DNA methylation on these genes in DRGs. Nerve injury increased activity of euchromatic histone-lysine N-methyltransferase-2 (G9a), histone deacetylases and enhancer of zeste homolog-2 (EZH2), but only G9a inhibition consistently restored K+ channel expression. Selective knockout of the gene encoding G9a in DRG neurons completely blocked K+ channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced genes associated with K+ channels but also normalized 638 genes down- or upregulated by nerve injury. Thus G9a has a dominant function in transcriptional repression of K+ channels and in acute-to-chronic pain transition after nerve injury.


Journal of Biological Chemistry | 2012

Chronic Opioid Potentiates Presynaptic but Impairs Postsynaptic N-Methyl-d-aspartic Acid Receptor Activity in Spinal Cords IMPLICATIONS FOR OPIOID HYPERALGESIA AND TOLERANCE

Yi Lin Zhao; Shao Rui Chen; Hong Chen; Hui Lin Pan

Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.Background: We determined the role of presynaptic N-methyl-d-aspartate receptor (NMDAR) activity in spinal cords in opioid-induced hyperalgesia and tolerance. Results: Chronic opioid increases presynaptic NMDAR activity at primary sensory nerve terminals through protein kinase C. Conclusion: Increased presynaptic NMDAR activity potentiates nociceptive input and is responsible for opioid hyperalgesia and tolerance. Significance: Understanding mechanisms of increased NMDAR activity is important for improving opioid therapies. Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.


Journal of Pharmacology and Experimental Therapeutics | 2011

Increased Presynaptic and Postsynaptic α2-Adrenoceptor Activity in the Spinal Dorsal Horn in Painful Diabetic Neuropathy

Shao Rui Chen; Hong Chen; Wei Xiu Yuan; Hui Lin Pan

Diabetic neuropathy is a common cause of chronic pain that is not adequately relieved by conventional analgesics. The α2-adrenoceptors are involved in the regulation of glutamatergic input and nociceptive transmission in the spinal dorsal horn, but their functional changes in diabetic neuropathy are not clear. The purpose of the present study was to determine the plasticity of presynaptic and postsynaptic α2-adrenoceptors in the control of spinal glutamatergic synaptic transmission in painful diabetic neuropathy. Whole-cell voltage-clamp recordings of lamina II neurons were performed in spinal cord slices from streptozotocin-induced diabetic rats. The amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than vehicle-control rats. The specific α2-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline (UK-14304) (0.1–2 μM) inhibited the frequency of sEPSCs more in diabetic than vehicle-treated rats. UK-14304 also inhibited the amplitude of evoked monosynaptic and polysynaptic EPSCs more in diabetic than control rats. Furthermore, the amplitude of postsynaptic G protein-coupled inwardly rectifying K+ channel (GIRK) currents elicited by UK-14304 was significantly larger in the diabetic group than in the control group. In addition, intrathecal administration of UK-14304 increased the nociceptive threshold more in diabetic than vehicle-control rats. Our findings suggest that diabetic neuropathy increases the activity of presynaptic and postsynaptic α2-adrenoceptors to attenuate glutamatergic transmission in the spinal dorsal horn, which accounts for the potentiated antinociceptive effect of α2-adrenoceptor activation in diabetic neuropathic pain.


Journal of Biological Chemistry | 2012

Casein Kinase 2-mediated Synaptic GluN2A Up-regulation Increases N-Methyl-d-aspartate Receptor Activity and Excitability of Hypothalamic Neurons in Hypertension

Zeng You Ye; Li Li; De Pei Li; Hui Lin Pan

Increased glutamatergic input, particularly N-methyl-D-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser(1480) phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser(1480) phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension.Background: We determined changes in GluN2 subunit composition responsible for increased N-methyl-d-aspartate receptor (NMDAR) activity in hypothalamus in hypertension. Results: Protein kinase CK2 mediates up-regulation of synaptic GluN2A, which increases NMDAR activity and neuronal excitability in hypertension. Conclusion: Increased NMDAR activity in hypertension results from CK2-mediated GluN2A up-regulation. Significance: Understanding GluN2 subunit changes in brain is important for developing new treatments for hypertension. Increased glutamatergic input, particularly N-methyl-d-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser1480 phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser1480 phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension.


The Journal of Physiology | 2014

Calcineurin inhibitor induces pain hypersensitivity by potentiating pre‐ and postsynaptic NMDA receptor activity in spinal cords

Shao Rui Chen; Yi Min Hu; Hong Chen; Hui Lin Pan

•  We developed an animal model to study the mechanisms underlying the pain syndrome commonly seen in organ transplant patients receiving calcineurin inhibitors. •  Systemic treatment with the calcineurin inhibitor induces long‐lasting pain hypersensitivity and increases glutamate receptor activity in the spinal cord. •  Blocking glutamate receptor activity at the spinal cord level effectively reduces pain hypersensitivity induced by the calcineurin inhibitor. •  This information advances our understanding of the molecular basis of pain caused by calcineurin inhibitors and identifies new strategies for treating such pain syndrome in transplant patients.


Journal of Biological Chemistry | 2012

Up-regulation of Cavβ3 Subunit in Primary Sensory Neurons Increases Voltage-activated Ca2+ Channel Activity and Nociceptive Input in Neuropathic Pain

Li Li; Xue Hong Cao; Shao Rui Chen; Hee Dong Han; Gabriel Lopez-Berestein; Anil K. Sood; Hui Lin Pan

Background: We determined how nerve injury affects calcium channel β (Cavβ) subunits in neuropathic pain. Results: Nerve injury increases Cavβ3 expression level, and Cavβ3 knockdown reduces increased calcium channel activity in primary sensory neurons and pain hypersensitivity. Conclusion: Cavβ3 subunit up-regulation augments calcium channel activity in neuropathic pain. Significance: Understanding molecular changes in sensory neurons is important for developing new treatments for neuropathic pain. High voltage-activated calcium channels (HVACCs) are essential for synaptic and nociceptive transmission. Although blocking HVACCs can effectively reduce pain, this treatment strategy is associated with intolerable adverse effects. Neuronal HVACCs are typically composed of α1, β (Cavβ), and α2δ subunits. The Cavβ subunit plays a crucial role in the membrane expression and gating properties of the pore-forming α1 subunit. However, little is known about how nerve injury affects the expression and function of Cavβ subunits in primary sensory neurons. In this study, we found that Cavβ3 and Cavβ4 are the most prominent subtypes expressed in the rat dorsal root ganglion (DRG) and dorsal spinal cord. Spinal nerve ligation (SNL) in rats significantly increased mRNA and protein levels of the Cavβ3, but not Cavβ4, subunit in the DRG. SNL also significantly increased HVACC currents in small DRG neurons and monosynaptic excitatory postsynaptic currents of spinal dorsal horn neurons evoked from the dorsal root. Intrathecal injection of Cavβ3-specific siRNA significantly reduced HVACC currents in small DRG neurons and the amplitude of monosynaptic excitatory postsynaptic currents of dorsal horn neurons in SNL rats. Furthermore, intrathecal treatment with Cavβ3-specific siRNA normalized mechanical hyperalgesia and tactile allodynia caused by SNL but had no significant effect on the normal nociceptive threshold. Our findings provide novel evidence that increased expression of the Cavβ3 subunit augments HVACC activity in primary sensory neurons and nociceptive input to dorsal horn neurons in neuropathic pain. Targeting the Cavβ3 subunit at the spinal level represents an effective strategy for treating neuropathic pain.


Journal of Pharmacology and Experimental Therapeutics | 2011

Functional Plasticity of Group II Metabotropic Glutamate Receptors in Regulating Spinal Excitatory and Inhibitory Synaptic Input in Neuropathic Pain

Hong Yi Zhou; Shao Rui Chen; Hong Chen; Hui Lin Pan

Metabotropic glutamate receptors (mGluRs) are involved in the modulation of synaptic transmission and plasticity. Group II mGluRs in the spinal cord regulate glutamatergic input, but their functional changes in neuropathic pain are not clear. In this study, we determined the plasticity of spinal group II mGluRs in controlling excitatory and inhibitory synaptic transmission and nociception in neuropathic pain. Neuropathic pain was induced by spinal nerve ligation in rats, and whole-cell voltage-clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) and spontaneous and miniature GABAergic and glycinergic inhibitory postsynaptic currents (sIPSCs and mIPSCs, respectively) were performed in spinal cord slices. The specific group II mGluR agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) had a similar inhibitory effect on monosynaptic EPSCs evoked from the dorsal root in sham and nerve-injured rats. However, DCG-IV produced a greater inhibitory effect on evoked polysynaptic EPSCs and the frequency of spontaneous EPSCs in nerve-injured rats than in control rats. Although DCG-IV similarly reduced the frequency of GABAergic sIPSCs and mIPSCs in both groups, it distinctly inhibited the frequency of glycinergic sIPSCs and mIPSCs only in nerve-injured rats. The DCG-IV effect was blocked by the group II mGluR antagonist but not by the N-methyl-d-aspartate receptor antagonist. Strikingly, intrathecal injection of DCG-IV dose-dependently attenuated allodynia and hyperalgesia in nerve-injured rats but produced hyperalgesia in control rats. Our study provides new information that nerve injury up-regulates group II mGluRs present on glutamatergic and glycinergic interneurons in the spinal cord. Activation of group II mGluRs reduces neuropathic pain probably by attenuating glutamatergic and glycinergic input to spinal dorsal horn neurons.

Collaboration


Dive into the Hui Lin Pan's collaboration.

Top Co-Authors

Avatar

Shao Rui Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hong Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jing Dun Xie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Geoffroy Laumet

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hee Sun Byun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hongyi Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Li Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Wei Xiu Yuan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuhao Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anil K. Sood

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge