Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui-Ling Yen is active.

Publication


Featured researches published by Hui-Ling Yen.


Journal of Virology | 2005

Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004

Elena A. Govorkova; Jerold E. Rehg; Scott Krauss; Hui-Ling Yen; Yi Guan; Malik Peiris; Tien D. Nguyen; Thi H. Hanh; Pilaipanl Puthavathana; Hoang T. Long; Chantanee Buranathai; Wilina Lim; Robert G. Webster; Erich Hoffmann

ABSTRACT The 2004 outbreaks of H5N1 influenza viruses in Vietnam and Thailand were highly lethal to humans and to poultry; therefore, newly emerging avian influenza A viruses pose a continued threat, not only to avian species but also to humans. We studied the pathogenicity of four human and nine avian H5N1/04 influenza viruses in ferrets (an excellent model for influenza studies). All four human isolates were fatal to intranasally inoculated ferrets. The human isolate A/Vietnam/1203/04 (H5N1) was the most pathogenic isolate; the severity of disease was associated with a broad tissue tropism and high virus titers in multiple organs, including the brain. High fever, weight loss, anorexia, extreme lethargy, and diarrhea were observed. Two avian H5N1/04 isolates were as pathogenic as the human viruses, causing lethal systemic infections in ferrets. Seven of nine H5N1/04 viruses isolated from avian species caused mild infections, with virus replication restricted to the upper respiratory tract. All chicken isolates were nonlethal to ferrets. A sequence analysis revealed polybasic amino acids in the hemagglutinin connecting peptides of all H5N1/04 viruses, indicating that multiple molecular differences in other genes are important for a high level of virulence. Interestingly, the human A/Vietnam/1203/04 isolate had a lysine substitution at position 627 of PB2 and had one to eight amino acid changes in all gene products except that of the M1 gene, unlike the A/chicken/Vietnam/C58/04 and A/quail/Vietnam/36/04 viruses. Our results indicate that viruses that are lethal to mammals are circulating among birds in Asia and suggest that pathogenicity in ferrets, and perhaps humans, reflects a complex combination of different residues rather than a single amino acid difference.


The Journal of Infectious Diseases | 2004

Influenza Viruses Resistant to the Antiviral Drug Oseltamivir: Transmission Studies in Ferrets

M. Louise Herlocher; Rachel Truscon; Stephanie Elias; Hui-Ling Yen; Noel A. Roberts; Suzanne E. Ohmit; Arnold S. Monto

Three type A influenza viruses, each of which has a distinct neuraminidase-gene mutation and is resistant to the neuraminidase inhibitor oseltamivir, have been isolated. Previously, in the ferret model, an R292K mutant of a type A (H3N2) virus was not transmitted under conditions in which the wild-type virus was transmitted. This model was used to investigate whether the E119V mutant of a type A (H3N2) virus and the H274Y mutant of a type A (H1N1) virus would be transmitted under similar circumstances. Both mutant viruses were transmitted, although the H274Y mutant required a 100-fold-higher dose for infection of donor ferrets and was transmitted more slowly than was the wild type. Both the mutant and the wild-type viruses retained their genotypic characteristics.


The Lancet | 2013

Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance

Yunwen Hu; Shuihua Lu; Zhigang Song; Wei Wang; Pei Hao; Jianhua Li; Xiaonan Zhang; Hui-Ling Yen; Bisheng Shi; Tao Li; Wencai Guan; Lei Xu; Yi Liu; Sen Wang; Xiaoling Zhang; Di Tian; Zhaoqin Zhu; Jing He; Kai Huang; Huijie Chen; Lulu Zheng; Xuan Li; Jie Ping; Bin Kang; Xiuhong Xi; Lijun Zha; Yixue Li; Zhiyong Zhang; Malik Peiris; Zhenghong Yuan

BACKGROUND On March 30, a novel influenza A subtype H7N9 virus (A/H7N9) was detected in patients with severe respiratory disease in eastern China. Virological factors associated with a poor clinical outcome for this virus remain unclear. We quantified the viral load and analysed antiviral resistance mutations in specimens from patients with A/H7N9. METHODS We studied 14 patients with A/H7N9 disease admitted to the Shanghai Public Health Clinical Centre (SPHCC), China, between April 4, and April 20, 2013, who were given antiviral treatment (oseltamivir or peramivir) for less than 2 days before admission. We investigated the viral load in throat, stool, serum, and urine specimens obtained sequentially from these patients. We also sequenced viral RNA from these specimens to study the mutations associated with resistance to neuraminidase inhibitors and their association with disease outcome. FINDINGS All patients developed pneumonia, seven of them required mechanical ventilation, and three of them further deteriorated to become dependent on extracorporeal membrane oxygenation (ECMO), two of whom died. Antiviral treatment was associated with a reduction of viral load in throat swab specimens in 11 surviving patients. Three patients with persistently high viral load in the throat in spite of antiviral therapy became ECMO dependent. An Arg292Lys mutation in the virus neuraminidase (NA) gene known to confer resistance to both zanamivir and oseltamivir was identified in two of these patients, both also received corticosteroid treatment. In one of them, wild-type sequence Arg292 was noted 2 days after start of antiviral treatment, and the resistant mutant Lys292 dominated 9 days after start of treatment. INTERPRETATION Reduction of viral load following antiviral treatment correlated with improved outcome. Emergence of NA Arg292Lys mutation in two patients who also received corticosteroid treatment led to treatment failure and a poor clinical outcome. The emergence of antiviral resistance in A/H7N9 viruses, especially in patients receiving corticosteroid therapy, is concerning, needs to be closely monitored, and considered in pandemic preparedness planning. FUNDING National Megaprojects of China for Infectious Diseases, Shanghai Municipal Health and Family Planning Commission, the National Key Basic Research Program of China, Ministry of Science and Technology, and National Natural Science Foundation of China.


The Journal of Infectious Diseases | 2005

Virulence May Determine the Necessary Duration and Dosage of Oseltamivir Treatment for Highly Pathogenic A/Vietnam/1203/04 Influenza Virus in Mice

Hui-Ling Yen; Arnold S. Monto; Robert G. Webster; Elena A. Govorkova

BACKGROUND Control of highly pathogenic avian H5N1 influenza viruses is a major public-health concern. Antiviral drugs could be the only option early in the pandemic.METHODS. BALB/c mice were given oseltamivir (0.1, 1, or 10 mg/kg/day) twice daily by oral gavage; the first dose was given 4 h before inoculation with H5N1 A/Vietnam/1203/04 (VN1203/04) virus. Five- and 8-day regimens were evaluated.RESULTS. Oseltamivir produced a dose-dependent antiviral effect against VN1203/04 in vivo (P<.01). The 5-day regimen at 10 mg/kg/day protected 50% of mice; deaths in this treatment group were delayed and indicated the replication of residual virus after the completion of treatment. Eight-day regimens improved oseltamivir efficacy, and dosages of 1 and 10 mg/kg/day significantly reduced virus titers in organs and provided 60% and 80% survival rates, respectively (P<.05). Overall, the efficacy of the 5- and 8-day regimens differed significantly (death hazard ratio, 2.658; P<.01). The new H5N1 antigenic variant VN1203/04 was more pathogenic in mice than was A/HK/156/97 virus, and a prolonged and higher-dose oseltamivir regimen may be required for the most beneficial antiviral effect.CONCLUSIONS. Oseltamivir prophylaxis is efficacious against lethal challenge with VN1203/04 virus in mice. Viral virulence may affect the antiviral treatment schedule.


Journal of Virology | 2007

Neuraminidase Inhibitor-Resistant Recombinant A/Vietnam/1203/04 (H5N1) Influenza Viruses Retain Their Replication Efficiency and Pathogenicity In Vitro and In Vivo

Hui-Ling Yen; Natalia A. Ilyushina; Rachelle Salomon; Erich Hoffmann; Robert G. Webster; Elena A. Govorkova

ABSTRACT Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC50] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC50 increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (Vmax and Km) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.


Journal of Virology | 2007

Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model

Hui-Ling Yen; Aleksandr S. Lipatov; Natalia A. Ilyushina; Elena A. Govorkova; John Franks; Neziha Yilmaz; Alan Douglas; Alan Hay; Scott Krauss; Jerold E. Rehg; Erich Hoffmann; Robert G. Webster

ABSTRACT The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synthetic sialosaccharides with α2,3 or α2,6 linkages) on transmissibility were assessed. A/Vietnam/1203/04 and A/Vietnam/JP36-2/05 viruses, which possess “avian-like” α2,3-linked sialic acid (SA) receptor specificity, caused neurological symptoms and death in ferrets inoculated with 103 50% tissue culture infectious doses. A/Hong Kong/213/03 and A/Turkey/65-596/06 viruses, which show binding affinity for “human-like” α2,6-linked SA receptors in addition to their affinity for α2,3-linked SA receptors, caused mild clinical symptoms and were not lethal to the ferrets. No transmission of A/Vietnam/1203/04 or A/Turkey/65-596/06 virus was detected. One contact ferret developed neutralizing antibodies to A/Hong Kong/213/03 but did not exhibit any clinical signs or detectable virus shedding. In two groups, one of two naïve contact ferrets had detectable virus after 6 to 8 days when housed together with the A/Vietnam/JP36-2/05 virus-inoculated ferrets. Infected contact ferrets showed severe clinical signs, although little or no virus was detected in nasal washes. This limited virus shedding explained the absence of secondary transmission from the infected contact ferret to the other naïve ferret that were housed together. Our results suggest that despite their receptor binding affinity, circulating H5N1 viruses retain molecular determinants that restrict their spread among mammalian species.


Journal of Virology | 2006

Importance of Neuraminidase Active-Site Residues to the Neuraminidase Inhibitor Resistance of Influenza Viruses

Hui-Ling Yen; Erich Hoffmann; Garry L. Taylor; Christoph Scholtissek; Arnold S. Monto; Robert G. Webster; Elena A. Govorkova

ABSTRACT Neuraminidase inhibitors (NAIs) are antivirals designed to target conserved residues at the neuraminidase (NA) enzyme active site in influenza A and B viruses. The conserved residues that interact with NAIs are under selective pressure, but only a few have been linked to resistance. In the A/Wuhan/359/95 (H3N2) recombinant virus background, we characterized seven charged, conserved NA residues (R118, R371, E227, R152, R224, E276, and D151) that directly interact with the NAIs but have not been reported to confer resistance to NAIs. These NA residues were replaced with amino acids that possess side chains having similar properties to maintain their original charge. The NA mutations we introduced significantly decreased NA activity compared to that of the A/Wuhan/359/95 recombinant wild-type and R292K (an NA mutation frequently reported to confer resistance) viruses, which were analyzed for comparison. However, the recombinant viruses differed in replication efficiency when we serially passaged them in vitro; the growth of the R118K and E227D viruses was most impaired. The R224K, E276D, and R371K mutations conferred resistance to both zanamivir and oseltamivir, while the D151E mutation reduced susceptibility to oseltamivir only (∼10-fold) and the R152K mutation did not alter susceptibility to either drug. Because the R224K mutation was genetically unstable and the emergence of the R371K mutation in the N2 subtype is statistically unlikely, our results suggest that only the E276D mutation is likely to emerge under selective pressure. The results of our study may help to optimize the design of NAIs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets

Hui-Ling Yen; Chi-Hui Liang; Chung-Yi Wu; Heather L. Forrest; Angela Ferguson; Ka-Tim Choy; Jeremy O. Jones; Diana Dik-Yan Wong; Peter Pak-Hang Cheung; Che-Hsiung Hsu; Olive T. W. Li; Kit M. Yuen; Renee W. Y. Chan; Leo L.M. Poon; Michael C. W. Chan; John M. Nicholls; Scott Krauss; Chi-Huey Wong; Yi Guan; Robert G. Webster; Richard J. Webby; Malik Peiris

A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin–neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.


Journal of Virology | 2007

Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks

Diane J. Hulse-Post; John Franks; K. Boyd; Rachelle Salomon; Erich Hoffmann; Hui-Ling Yen; Richard J. Webby; David Walker; T. D. Nguyen; Robert G. Webster

ABSTRACT The highly pathogenic (HP) influenza viruses H5 and H7 are usually nonpathogenic in mallard ducks. However, the currently circulating HP H5N1 viruses acquired a different phenotype and are able to cause mortality in mallards. To establish the molecular basis of this phenotype, we cloned the human A/Vietnam/1203/04 (H5N1) influenza virus isolate that is highly pathogenic in ferrets, mice, and mallards and found it to be a heterogeneous mixture. Large-plaque isolates were highly pathogenic to ducks, mice, and ferrets, whereas small-plaque isolates were nonpathogenic in these species. Sequence analysis of the entire genome revealed that the small-plaque and the large-plaque isolates differed in the coding of five amino acids. There were two differences in the hemagglutinin (HA) gene (K52T and A544V), one in the PA gene (T515A), and two in the PB1 gene (K207R and Y436H). We inserted the amino acid changes into the wild-type reverse genetic virus construct to assess their effects on pathogenicity in vivo. The HA gene mutations and the PB1 gene K207R mutation did not alter the HP phenotype of the large-plaque virus, whereas constructs with the PA (T515A) and PB1 (Y436H) gene mutations were nonpathogenic in orally inoculated ducks. The PB1 (Y436H) construct was not efficiently transmitted in ducks, whereas the PA (T515A) construct replicated as well as the wild-type virus did and was transmitted efficiently. These results show that the PA and PB1 genes of HP H5N1 influenza viruses are associated with lethality in ducks. The mechanisms of lethality and the perpetuation of this lethal phenotype in ducks in nature remain to be determined.


Current Opinion in Immunology | 2010

Host response to Influenza virus: protection versus immunopathology

J. S. M. Peiris; Kenrie P. Y. Hui; Hui-Ling Yen

Host responses play crucial roles in defense against influenza but sometimes these may contribute to immunopathology. Potentially, this may be more important in disease caused by viruses such as avian influenza A H5N1 or the 1918 H1N1 influenza virus rather than with seasonal influenza or pandemic H1N1 2009 (pdmH1N1). Understanding pathogenesis will help develop novel therapeutic options that minimize immunopathology without impairing beneficial host defenses.

Collaboration


Dive into the Hui-Ling Yen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malik Peiris

Public health laboratory

View shared research outputs
Top Co-Authors

Avatar

Yi Guan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich Hoffmann

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ka-Tim Choy

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Rachelle Salomon

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuguo Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Elena A. Govorkova

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge