Hui-Mei Wu
Anhui Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui-Mei Wu.
Cellular Signalling | 2014
Lei Fang; Hui-Mei Wu; Pei-Shan Ding; Rong-Yu Liu
Toll-like receptor 2 (TLR2) is involved in phagocytosis and autophagy to enhance host innate immune response to bacterial infection. TLR2 has been reported to participate in the recognition of Staphylococcus aureus (S. aureus). However, the role of TLR2 in phagocytosis and autophagy in S. aureus-stimulated macrophages and the underlying mechanisms as yet remain unclear. In the present study, stimulation of mouse macrophage cell line RAW264.7 with S. aureus activated multiple signaling pathways including mitogen-activated protein kinases (MAPKs), myeloid differentiation factor 88 (MyD88), phosphatidylinositide 3-kinase (PI3K) and Rac1 and triggered autophagy process. Knockdown of TLR2 by siRNA significantly reduced phagocytosis and autophagy of macrophages upon S. aureus infection. Interestingly, TLR2 siRNA markedly attenuated S. aureus-induced phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 or extracellular regulated protein kinase (ERK) in macrophages. Similarly, SP600125, a JNK inhibitor, also down-regulated phagocytosis and autophagy in S. aureus-stimulated macrophages. Furthermore, TLR2 siRNA and SP600125 simultaneous treatment showed similar phagocytosis and autophagy compared to that in TLR2 siRNA treatment alone. Collectively, our results indicate that TLR2 may be critical for phagocytosis and autophagy through JNK signaling pathway, and provide an underlying mechanistic link between innate immune receptor and induction of phagocytosis and autophagy in S. aureus-stimulated macrophages.
Molecular Immunology | 2015
Hui-Mei Wu; Lei Fang; Qi-Ying Shen; Rong-Yu Liu
BACKGROUND c-Jun N-terminal kinase (JNK) relays extracellular stimuli through phosphorylation cascades that lead to various cell responses. In the present study, we aimed to investigate the effect of the JNK inhibitor SP600125 on the resolution of airway inflammation, and the underlying mechanism using a murine acute asthma model. METHODS Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) on day 0, and challenged with OVA on day 14-20. Meanwhile, some of the mice were treated with SP600125 (30 mg/kg) intraperitoneally 2 h before each challenge. The airway inflammation was evaluated by counting the numbers of various types of inflammatory cells in bronchoalveolar lavage fluid (BALF), histopathology, cytokines production and mucus secretion in individual mouse. In addition, we analyzed the protein levels of phosphorylated JNK and TLR9 in the lung tissues. RESULTS SP600125 markedly reduced the invasion of inflammatory cells into the peribronchial regions, and decreased the numbers of eosinophils, monocytes, neutrophils and lymphocytes in BALF. SP600125 also reduced the level of plasma OVA-specific IgE, lowered the production of pro-inflammatory cytokines in BALF and alleviated mucus secretion. Meanwhile, SP600125 inhibited OVA-induced, increased expression of p-JNK and TLR9 in the lung tissues. CONCLUSIONS Collectively, our data demonstrated that SP600125 promoted resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. The JNK-TLR9 pathway may be a new therapeutic target in the treatment for the allergic asthma.
Molecular Immunology | 2016
Bing Zhang; Lei Fang; Hui-Mei Wu; Peishan Ding; Ke Xu; Rong-Yu Liu
Activation of toll-like receptor (TLR) signaling that initiates an innate immune response to pathogens must be strictly regulated to prevent excessive inflammatory damage in the host. Here, we demonstrate that Mer receptor tyrosine kinase (MerTK) is a negative regulatory molecule in the lipoteichoic acid (LTA)-induced inflammatory response. LTA that activated TLR2 signaling concomitantly induced activation of MerTK signaling in RAW264.7 macrophages, including phosphoinositide 3-kinase (PI3K)/Akt and suppressor of cytokine signaling 3 (SOCS3). Moreover, LTA induced MerTK activation in a time-dependent manner, and LTA-induced MerTK activation was dependent on the ligand Gas6. Additionally, pretreatment with a specific Mer-blocking antibody significantly inhibited LTA-induced phosphorylation of MerTK, while further enhancing LTA-induced phosphorylation of IκB-α and NF-κBp65 as well as production of TNF-α and IL-6. Meanwhile, the antibody blockade of MerTK markedly prevented LTA-induced Akt phosphorylation and SOCS3 expression, both of which were crucial for the inhibition of TLR2-mediated immune response. Collectively, these results suggest, for the first time, that MerTK is an intracellular negative feedback regulator that inhibits the inflammatory response of LTA-stimulated macrophages through the PI3K/Akt pathway and SOCS3 protein.
Life Sciences | 2016
Hui-Mei Wu; Jiong Wang; Bing Zhang; Lei Fang; Ke Xu; Rong-Yu Liu
AIMS Phagocytic and autophagic responses are critical for effective host defense against bacterial infection. Bacterial DNA which contains unmethylated Cytosine-phosphate-Guanine (CpG) motifs can trigger a variety of defense mechanisms via Toll-like receptor 9 (TLR9). Here, we aimed to investigate the underlying mechanism of TLR9-mediated phagocytosis and autophagy in Staphylococcus aureus (S.aureus)-stimulated macrophages. MAIN METHODS The macrophage cell line RAW264.7 or primary peritoneal macrophage was pretreated with CpG-ODN and then stimulated by S. aureus, where some of them were pretreated with SP600125 or SB203580 simultaneously. The protein expressions of TLR9, MyD88, SR-A, CD36, LC3, Beclin-1, and phosphorylated level of c-Jun N-terminal kinase (JNK), P38 and extracellular-regulated protein kinase (ERK) were detected by western blotting. The phagocytosis and LC3 punctate-structures of macrophage were observed by confocal laser scanning microscope. KEY FINDINGS CpG-ODN significantly amplified S. aureus-induced phagocytosis and autophagy of RAW264.7 and TLR9(+/+) primary peritoneal macrophage as compared to that of Non-CpG treated cells, while such effect was abolished in TLR9(-/-) primary peritoneal macrophages. Meanwhile, CpG-ODN significantly enhanced S. aureus-induced phosphorylation of JNK and P38 but not ERK in RAW264.7. Specific inhibition of JNK or P38 by SP600125 or SB203580, dramatically down-regulated CpG-induced phagocytosis and autophagy in S. aureus-stimulated RAW264.7 and TLR9(+/+) primary peritoneal macrophage, while they showed no further down-regulation of phagocytosis and autophagy in TLR9(-/-) primary peritoneal macrophages. SIGNIFICANCE Our data indicated that CpG-ODN activates TLR9-JNK/P38 signaling to promote phagocytosis and autophagy in S. aureus-stimulated macrophages, these findings provide novel insights into how innate immune cells defend bacterial infection via TLR9.
American Journal of Respiratory Cell and Molecular Biology | 2014
Peishan Ding; Hui-Mei Wu; Lei Fang; Ming Wu; Rongyu Liu
During infection, recruited phagocytes transmigrate across the epithelium to remove the pathogens deposited on the airway surface. However, it is difficult to directly observe cellular behaviors (e.g., transmigration) in single-cell layer cultures or in live animals. Combining a three-dimensional (3D) cell coculture model mimicking airway infection with time-lapse confocal imaging as a four-dimensional technique allowed us to image the behaviors of macrophages in 3D over time. The airway infection model was moved to a glass-bottomed dish for live-cell imaging by confocal laser scanning microscopy. Using time-lapse confocal imaging, we recorded macrophages transmigrating across the polyethylene terephthalate (PET) membrane of the inserts through the 5-μm pores in the PET membrane. Macrophages on the apical side of the insert exhibited essentially three types of movements, one of which was transmigrating across the epithelial cell monolayer and arriving at the surface of monolayer. We found that adding Staphylococcus aureus to the model increased the transmigration index but not the transmigration time of the macrophages. Only in the presence of S. aureus were the macrophages able to transmigrate across the epithelial cell monolayer. Apical-to-basal transmigration of macrophages was visualized dynamically. We also imaged the macrophages phagocytizing S. aureus deposited on the surface of the monolayer in the airway infection model. This work provides a useful tool to study the cellular behaviors of immune cells spatially and temporally during infection.
Journal of Pineal Research | 2016
Hui-Mei Wu; Qi-Ying Shen; Lei Fang; Shihai Zhang; Pei-Ting Shen; Ya-Jing Liu; Rong-Yu Liu
Toll‐like receptors (TLRs) play pivotal role in the pathogenesis of allergic airway diseases such as asthma. TLR9 is one of the most extensively studied TLRs as an approach to treat asthma. In this study, we investigated the role of TLR9 in the allergic airway inflammation and the underlying mechanism. Wild‐type (WT) mice and TLR9−/− mice were sensitized and challenged with OVA to establish allergic airway disease model. We found that the expression of TLR9 was elevated concomitantly with airway inflammation post‐OVA challenge, and TLR9 deficiency effectively inhibited airway inflammation, including serum OVA‐specific immunoglobulin E (IgE), pulmonary inflammatory cell recruitment, mucus secretion, and bronchoalveolar lavage fluid (BALF) inflammatory cytokine production. Meanwhile, the protein expression of hydroxyindole‐o‐methyltransferase (HIOMT) in lung tissues, the level of melatonin in serum, and BALF were reduced in OVA‐challenged WT mice, while these reductions were significantly restored by TLR9 deficiency. Additionally, we showed that although TLR9 deficiency had no effect on OVA‐induced phosphorylation of JNK, inhibition of JNK by specific inhibitor SP600125 significantly decreased OVA‐induced expression of TLR9, suggesting that JNK is the upstream signal molecular of TLR9. Furthermore, SP600125 treatment promoted resolution of allergic airway inflammation in OVA‐challenged WT mice, but not further ameliorated allergic airway inflammation in OVA‐challenged TLR9−/− mice. Similarly, SP600125 significantly restored the protein expression of HIOMT and the level of melatonin in OVA‐challenged WT mice, while such effect was not further enhanced by TLR9 deficiency. Collectively, our results indicated that JNK–TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis.
Respirology | 2015
Qi-Ying Shen; Lei Fang; Hui-Mei Wu; Fang He; Pei-Shan Ding; Rong-Yu Liu
Repeated inhalation of sevoflurane (SVF) can benefit asthmatic patients by bronchodilation. However, the impact of repeated inhalation of SVF on allergic airway inflammation has not been clarified. This study was aimed at investigating the effects of repeated inhalation of SVF on airway inflammation in mice.
Life Sciences | 2016
Pei Zhang; Lei Fang; Hui-Mei Wu; Peishan Ding; Qi-Ying Shen; Rong-Yu Liu
AIMS Glucocorticoids are the most effective anti-inflammatory agent in treating pulmonary diseases typically accompanied by hypoxia. Our previous study has demonstrated that glucocorticoid receptor α (GRα) expression is reduced in hypoxia but the underlying mechanism remains elusive. In this study we aim to identify the signaling pathway involved in hypoxia-induced down-regulation of GRα, and whether hypoxia affects nuclear translocation of GRα. MAIN METHODS Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) as the in vivo model. Mice were divided into control and OVA groups, and their lung histology and the expression of hypoxia inducible factor (HIF-1) and GRα were examined. A549 cells were exposed to chemical hypoxia as the in vitro model, where mitogen-activated protein kinases (MAPKs) were inhibited specifically by SB203580. Next, under normal or hypoxic conditions, the expression of GRα, MAPKs and HIF-1 signal protein were determined by Western blot analysis, and GRα translocation were observed through live-cell imaging. KEY FINDINGS In OVA challenged mice the expression of GRα was down-regulated whereas HIF-1 was up-regulated. Hypoxia caused a time-dependent decrease of GRα expression, and activated multiple signaling pathways including MAPKs and HIF-1. Moreover, GRα expression increased with MAPK inhibition. Interestingly, only MAPK inhibitor SB203580, but not JNK inhibitor SP600125 or ERK inhibitor U0126 improved the expression of GRα under hypoxic condition. GRα nuclear translocation was also significantly inhibited by hypoxia. SIGNIFICANCE Hypoxia down-regulated the expression of GRα through p38 signaling pathway, as well as inhibited GRα nuclear translocation significantly.
Inflammation | 2017
Xuqin Jiang; Lei Fang; Hui-Mei Wu; Xiaodong Mei; Fang He; Peishan Ding; Rong-Yu Liu
Toll-like receptors (TLRs) are innate pattern recognition receptors that play a critical role in allergic inflammation, yet their contribution to autophagy in asthma remains poorly defined. Here, we investigate the role of Toll-like receptor 2 (TLR2) in phosphoinositide 3-kinases/protein kinase B (PI3K/Akt) pathway-mediated autophagy in ovalbumin-induced airway inflammation in mice. Wild-type (WT) and TLR2-knockout (TLR2−/−) C57BL/6 mice were ovalbumin-sensitized and ovalbumin-challenged. In ovalbumin-challenged WT mice, enhanced expression of TLR2 in lung tissue, remarkable inflammatory cell infiltrates, goblet cell hyperplasia, and increased mucus production were observed. The number of inflammatory cells and interleukin-13 (IL-13) levels increased, while interferon-gamma (IFN-γ) levels decreased in bronchoalveolar lavage fluid. Expression of PI3K, phospho-Akt, Beclin-1 and LC3-II was enhanced significantly. These changes were mitigated dose-dependently in 3-methyl adenine-treated mice. In contrast, similar but weaker changes were found in ovalbumin-challenged TLR2−/− mice, and the changes were not significantly attenuated by 3-methyl adenine treatment. These results indicate that TLR2 confers a pivotal role in allergic airway inflammation via regulating the PI3K/Akt signaling pathway-related autophagy in mice.
Inflammation | 2017
Bing Zhang; Hui-Mei Wu; Lei Fang; Peishan Ding; Ke Xu; Qingbin Yang; Rong-Yu Liu
Mer receptor tyrosine kinase (MerTK) expressed in macrophages is essential for phagocytosis of apoptotic cells. Here, we investigate whether MerTK is involved in the phagocytosis of Staphylococcus aureus (S. aureus) and regulation of staphylococcal lipoteichoic acid (LTA)-induced inflammatory response in macrophages. We found that stimulating RAW264.7 macrophages with S. aureus activated multiple signaling pathways including toll-like receptor 2 (TLR2), scavenger receptor A (SR-A), and MerTK. Meanwhile, S. aureus stimulation also induced activation of proteins focal adhesion kinase (FAK) and Rac1, which are related to phagocytosis. Pretreatment with a specific Mer-blocking antibody significantly inhibited S. aureus-induced phosphorylation of MerTK, while it had no effect on S. aureus-induced activation of FAK and Rac1. Moreover, by confocal laser microscope, we observed that the antibody blockade of MerTK had little impact on the phagocytosis of S. aureus by RAW264.7 macrophages. Additionally, pretreatment with this antibody further promoted LTA-induced phosphorylation of nuclear factor κB (NF-κB) p65 subunit and production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and macrophage inflammatory protein-2 (MIP-2). Collectively, these results suggest that MerTK does not play an essential role in the phagocytosis of S. aureus but attenuates inflammation induced by staphylococcal LTA through blocking NF-κB activation.