Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui-Ming Zhang is active.

Publication


Featured researches published by Hui-Ming Zhang.


Journal of Experimental Botany | 2012

Reactive oxygen species form part of a regulatory pathway initiating trans-differentiation of epidermal transfer cells in Vicia faba cotyledons

Felicity A. Andriunas; Hui-Ming Zhang; Xue Xia; Christina E. Offler; David W. McCurdy; John W. Patrick

Various cell types can trans-differentiate to a transfer cell (TC) morphology characterized by deposition of polarized ingrowth walls comprised of a uniform layer on which wall ingrowths (WIs) develop. WIs form scaffolds supporting amplified plasma membrane areas enriched in transporters conferring a cellular capacity for high rates of nutrient exchange across apo- and symplasmic interfaces. The hypothesis that reactive oxygen species (ROS) are a component of the regulatory pathway inducing ingrowth wall formation was tested using Vicia faba cotyledons. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, on being placed into culture, their adaxial epidermal cells rapidly (hours) form ingrowth walls on their outer periclinal walls. These are readily visualized by electron microscopy, and epidermal peels of their trans-differentiating cells allow measures of cell-specific gene expression. Ingrowth wall formation responded inversely to pharmacological manipulation of ROS levels, indicating that a flavin-containing enzyme (NADPH oxidase) and superoxide dismutase cooperatively generate a regulatory H2O2 signature. Extracellular H2O2 fluxes peaked prior to the appearance of WIs and were followed by a slower rise in H2O2 flux that occurred concomitantly, and co-localized, with ingrowth wall formation. De-localizing the H2O2 signature caused a corresponding de-localization of cell wall deposition. Temporal and epidermal cell-specific expression profiles of VfrbohA and VfrbohC coincided with those of extracellular H2O2 production and were regulated by cross-talk with ethylene. It is concluded that H2O2 functions, downstream of ethylene, to activate cell wall biosynthesis and direct polarized deposition of a uniform wall on which WIs form.


Frontiers in Plant Science | 2013

Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction.

Felicity A. Andriunas; Hui-Ming Zhang; Xue Xia; John W. Patrick; Christina E. Offler

Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals.


Plant Journal | 2011

Glucose and ethylene signalling pathways converge to regulate trans-differentiation of epidermal transfer cells in Vicia narbonensis cotyledons

Felicity A. Andriunas; Hui-Ming Zhang; Hans Weber; David W. McCurdy; Christina E. Offler; John W. Patrick

Transfer cells are specialized transport cells containing invaginated wall ingrowths that provide an amplified plasma membrane surface area with high densities of transporter proteins. They trans-differentiate from differentiated cells at sites where enhanced rates of nutrient transport occur across apo/symplasmic boundaries. Despite their physiological importance, the signal(s) and signalling cascades responsible for initiating their trans-differentiation are poorly understood. In culture, adaxial epidermal cells of Vicia narbonensis cotyledons were induced to trans-differentiate to a transfer cell morphology. Manipulating their intracellular glucose concentrations by transgenic knock-down of ADP-glucose pyrophosphorylase expression and/or culture on a high-glucose medium demonstrated that glucose functioned as a negative regulator of wall ingrowth induction. In contrast, glucose had no detectable effect on wall ingrowth morphology. The effect on wall ingrowth induction of culture on media containing glucose analogues suggested that glucose acts through a hexokinase-dependent signalling pathway. Elevation of an epidermal cell-specific ethylene signal alone, or in combination with glucose analogues, countered the negative effect of glucose on wall ingrowth induction. Glucose modulated the amplitude of ethylene-stimulated wall ingrowth induction by down-regulating the expression of ethylene biosynthetic genes and an ethylene insensitive 3 (EIN3)-like gene (EIL) encoding a key transcription factor in the ethylene signalling cascade. A model is presented describing the interaction between glucose and ethylene signalling pathways regulating the induction of wall ingrowth formation in adaxial epidermal cells.


BMC Plant Biology | 2015

Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons

Hui-Ming Zhang; Simon Wheeler; Xue Xia; Ruslana Radchuk; Hans Weber; Christina E. Offler; John W. Patrick

BackgroundTransfer cells are characterized by intricate ingrowth walls, comprising an uniform wall upon which wall ingrowths are deposited. The ingrowth wall forms a scaffold to support an amplified plasma membrane surface area enriched in membrane transporters that collectively confers transfer cells with an enhanced capacity for membrane transport at bottlenecks for apo-/symplasmic exchange of nutrients. However, the underlying molecular mechanisms regulating polarized construction of the ingrowth wall and membrane transporter profile are poorly understood.ResultsAn RNAseq study of an inducible epidermal transfer cell system in cultured Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca2+ signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented.ConclusionsPathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.


Plant Signaling & Behavior | 2012

Extracellular hydrogen peroxide, produced through a respiratory burst oxidase/superoxide dismutase pathway, directs ingrowth wall formation in epidermal transfer cells of Vicia faba cotyledons.

Xue Xia; Hui-Ming Zhang; Felicity A. Andriunas; Christina E. Offler; John W. Patrick

The intricate, and often polarized, ingrowth walls of transfer cells (TCs) amplify their plasma membrane surface areas to confer a transport function of supporting high rates of nutrient exchange across apo-/symplasmic interfaces. The TC ingrowth wall comprises a uniform wall layer on which wall ingrowths are deposited. Signals and signal cascades inducing trans-differentiation events leading to formation of TC ingrowth walls are poorly understood. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, when placed into culture, their adaxial epidermal cells rapidly (h) and synchronously form polarized ingrowth walls accessible for experimental observations. Using this model, we recently reported findings consistent with extracellular hydrogen peroxide, produced through a respiratory burst oxidase homolog/superoxide dismutase pathway, initiating cell wall biosynthetic activity and providing directional information guiding deposition of the polarized uniform wall. Our conclusions rested on observations derived from pharmacological manipulations of hydrogen peroxide production and correlative gene expression data sets. A series of additional studies were undertaken, the results of which verify that extracellular hydrogen peroxide contributes to regulating ingrowth wall formation and is generated by a respiratory burst oxidase homolog/superoxide dismutase pathway.


Journal of Experimental Botany | 2015

Polarized and persistent Ca2+ plumes define loci for formation of wall ingrowth papillae in transfer cells

Hui-Ming Zhang; Mohammad S. Imtiaz; Derek R. Laver; David W. McCurdy; Christina E. Offler; Dirk F. van Helden; John W. Patrick

Highlight A persistent and polarized cytosolic Ca2+ signal, formed into plumes by co-operative activities of plasma membrane Ca2+ channels and Ca2+-ATPase clusters, directs papillate wall ingrowth deposition in trans-differentiating transfer cells.


Plant and Cell Physiology | 2015

Plasma Membrane Ca2+-permeable Channels Are Differentially Regulated By Ethylene and Hydrogen Peroxide To Generate Persistent Plumes Of Elevated Cytosolic Ca2+ During Transfer Cell Trans-differentiation

Hui-Ming Zhang; Dirk F. van Helden; David W. McCurdy; Christina E. Offler; John W. Patrick

The enhanced transport capability of transfer cells (TCs) arises from their ingrowth wall architecture comprised of a uniform wall on which wall ingrowths are deposited. The wall ingrowth papillae provide scaffolds to amplify plasma membranes that are enriched in nutrient transporters. Using Vicia faba cotyledons, whose adaxial epidermal cells spontaneously and rapidly (hours) undergo a synchronous TC trans-differentiation upon transfer to culture, has led to the discovery of a cascade of inductive signals orchestrating deposition of ingrowth wall papillae. Auxin-induced ethylene biosynthesis initiates the cascade. This in turn drives a burst in extracellular H2O2 production that triggers uniform wall deposition. Thereafter, a persistent and elevated cytosolic Ca(2+) concentration, resulting from Ca(2+) influx through plasma membrane Ca(2+)-permeable channels, generates a Ca(2+) signal that directs formation of wall ingrowth papillae to specific loci. We now report how these Ca(2+)-permeable channels are regulated using the proportionate responses in cytosolic Ca(2+) concentration as a proxy measure of their transport activity. Culturing cotyledons on various combinations of pharmacological agents allowed the regulatory influence of each upstream signal on Ca(2+) channel activity to be evaluated. The findings demonstrated that Ca(2+)-permeable channel activity was insensitive to auxin, but up-regulated by ethylene through two independent routes. In one route ethylene acts directly on Ca(2+)-permeable channel activity at the transcriptional and post-translational levels, through an ethylene receptor-dependent pathway. The other route is mediated by an ethylene-induced production of extracellular H2O2 which then acts translationally and post-translationally to up-regulate Ca(2+)-permeable channel activity. A model describing the differential regulation of Ca(2+)-permeable channel activity is presented.


Journal of Experimental Botany | 2015

Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

Hui-Ming Zhang; Mark J. Talbot; David W. McCurdy; John W. Patrick; Christina E. Offler

Highlight: In developing transfer cells, inward-directed deposition of wall ingrowth papillae into the cytoplasm occurs independently of, but through, depletion zones in the cortical microtubule array created by cytosolic Ca2+ plumes.


Journal of Experimental Botany | 2017

A Ca2+-dependent remodelled actin network directs vesicle trafficking to build wall ingrowth papillae in transfer cells

Hui-Ming Zhang; Kim Colyvas; John W. Patrick; Christina E. Offler

Polarized plumes of elevated cytosolic Ca2+ generate a remodelled actin network that directs localized exo- and endocytosis that is responsible for determining the spatially defined assembly of wall ingrowth papillae in transfer cells.


Frontiers in Plant Science | 2017

A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

Xue Xia; Hui-Ming Zhang; Christina E. Offler; John W. Patrick

Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

Collaboration


Dive into the Hui-Ming Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xue Xia

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Colyvas

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge