Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui Ren Zhou is active.

Publication


Featured researches published by Hui Ren Zhou.


Toxicology and Applied Pharmacology | 2003

Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin)

Yong Joo Chung; Hui Ren Zhou; James J. Pestka

Deoxynivalenol (DON, vomitoxin) is a trichothecene mycotoxin that potentially mediates toxicity by upregulating proinflammatory cytokine gene expression in vitro and in vivo. The purpose of this study was to test the hypothesis that DON-induced activation of mitogen-activated protein kinases (MAPKs) mediates transcriptional and posttranscriptional upregulation of TNF-alpha gene expression. RNAse protection assay revealed that DON at 100 to 500 ng/ml induced mRNA expression of TNF-alpha as well as IL-6, IFN-gamma, TGFbeta-1, and TGFbeta-3 and that these effects were potentiated by 100 ng/ml lipopolysaccharide (LPS). DON was found to induce phosphorylation of p38 kinase, extracellular signal-regulated kinases (ERKs), and c-Jun amino terminal kinases (JNKs) in a dose-dependent manner in the RAW 264.7 murine macrophage model. A luciferase reporter gene driven by the murine TNF-alpha promoter was used to assess the role of various MAPKs on DON upregulation of TNF-alpha gene transcription. The p38 inhibitor SB203580 reduced induction of luciferase activity by DON, LPS, and DON + LPS. In addition, the ERK inhibitor PD 98059 blocked DON- and DON + LPS-induced luciferase activity whereas the JNK inhibitor impaired LPS- and DON + LPS-induced luciferase activity. To study the effects of MAPKs on DON-induced TNF-alpha mRNA stability, an asynchronous model was used whereby cells were pretreated with LPS for 4 h and the medium was removed. Following incubation with medium containing a transcription inhibitor, 5,6-dichloro-beta-D-ribofuranosyl-benzimidazole, MAPK inhibitors and/or DON (250 ng/ml) cultures were monitored for TNF-alpha mRNA expression. DON-induced TNF-alpha mRNA stabilization was abrogated in the presence of SB 203580, whereas the stabilization by DON was not affected by PD 98059 or SP 600125. To verify the role of MAPKs in DON + LPS-induced TNF-alpha production, cells were incubated with LPS, DON, or LPS + DON for 18 h in the presence of inhibitors. ELISA of supernatant indicated that induction of TNF-alpha production by DON alone was significantly reduced by SB 203580 and PD 98059, whereas all three inhibitors blocked LPS- and DON + LPS-induced TNF-alpha production. Taken together, these results suggest that relative to DON-induced TNF-alpha mRNA expression, p38 and ERK activation contribute to DON-induced transcriptional upregulation whereas p38 plays a role in increasing mRNA stability.


Journal of Toxicology and Environmental Health | 1999

AMPLIFIED PROINFLAMMATORY CYTOKINE EXPRESSION AND TOXICITY IN MICE COEXPOSED TO LIPOPOLYSACCHARIDE AND THE TRICHOTHECENE VOMITOXIN (DEOXYNIVALENOL)

Hui Ren Zhou; Jack R. Harkema; Ding Yan; James J. Pestka

A single oral exposure to the trichothecene vomitoxin (VT) has been previously shown in the mouse to increase splenic mRNA levels for several cytokines in as little as 2 h. Since one underlying mechanism for these effects likely involves superinduction of transiently expressed cytokine genes, VT may also potentially amplify cytokine responses to inflammatory stimuli. To test this possibility, the effects of oral VT exposure on tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and IL-1beta expression were measured in mice that were intraperitoneally injected with lipopolysaccharide (LPS), a prototypic inflammatory agent. As anticipated, VT alone at 1, 5, and 25 mg/kg body weight increased splenic mRNA expression of all three cytokines after 3 h in a dose-response fashion. LPS injection at 1 and 5 mg/kg body weight also induced proinflammatory cytokine mRNA expression. There was a synergistic increase in TNF-alpha splenic mRNA levels in mice treated with both VT and LPS as compared to mice treated with either toxin alone, whereas the effects were additive for IL-6 and IL-1beta mRNA expression. When relative mRNA levels were examined over a 12-h period in mice given LPS (1 mg/kg) and/or VT (5 mg/kg), significant enhancement was observed up to 6, 12, and 3 h for TNF-alpha, IL-6, and IL-1beta, respectively. When plasma cytokine concentrations were measured, TNF-alpha was found to peak at 1 h and was significantly increased at 1, 3, and 6 h if mice were given LPS and VT, whereas LPS or VT alone caused much smaller increases in plasma TNF-alpha Plasma IL-6 peaked at 3 h in LPS, VT, and LPS/VT groups, with the combined toxin group exhibiting additive effects. Plasma IL-1beta was not detectable. The potential for VT and LPS to enhance toxicity was examined in a subsequent study. Mortality was not observed up to 72 h in mice exposed to a single oral dose of VT at 25 mg/kg body weight or to an intraperitoneal dose of LPS at 1 or 5 mg/kg body weight; however, all mice receiving VT and either LPS dose became moribund in less than 40 h. The principal histologic lesions in the moribund mice treated with VT and LPS were marked cell death and loss in thymus, Peyers patches, spleen, and bone marrow. In all of these lymphoid tissues, treatment-induced cell death had characteristic histologic features of apoptosis causing lymphoid atrophy. These results suggest that LPS exposure may markedly increase the toxicity of trichothecenes and that the immune system was a primary target of these interactive effects.


Toxicology | 1997

Potential role for IL-5 and IL-6 in enhanced IgA secretion by Peyer's patch cells isolated from mice acutely exposed to vomitoxin

Ding Yan; Hui Ren Zhou; Kathryn H. Brooks; James J. Pestka

Dietary exposure to vomitoxin (VT) results in hyperelevated serum IgA and IgA nephropathy in mice. To assess the possible role of cytokines in this IgA dysregulation, the effects of a single oral exposure in B6C3F1 male mice to 0, 5 or 25 mg/kg BW VT on production of IgA and cytokines in Peyers patch (PP) and spleen cell cultures were evaluated. IgA levels were increased significantly in PP cell cultures prepared from mice at 2 or 24 h after oral exposure to VT and subsequently stimulated with phorbol myristate acetate (PMA) and ionomycin (ION) or with lipopolysaccharide (LPS). Significant effects on IgA production were not observed in spleen cell cultures. Since cytokines such as IL-2, IL-4, IL-5 and IL-6 have been shown to promote IgA production, the effect of the same VT exposure regimen on secretion of these mediators was determined in PP and spleen cultures. Supernatant IL-2 and IL-4 levels were unaffected by the prior treatment of animals with VT. In contrast, IL-5 levels were increased significantly in 7-day PP cell cultures obtained 2 h after VT exposure both with and without PMA + ION exposure but not in other cultures. IL-6 levels were increased significantly in LPS-treated cultures prepared from PP at 2 and 24 h following exposure to VT. IL-6 levels were also elevated significantly in both PMA + ION or LPS treated cultures from spleen isolated at 2 h but not 24 h post VT exposure. To determine whether IL-5 or IL-6 play a role in IgA hyperelevation in vitro, PP and spleen cells from mice obtained 2 h after exposure to 25 mg/kg VT were cultured in the presence of neutralizing cytokine antibodies (Abs) and IgA production was monitored. Consistent with IL-5s previously documented role in IgA production, anti-IL-5 decreased IgA levels to background in cultures of both control and VT-exposed PP or spleen cells in the presence of either PMA + ION or LPS. Similar results were seen with addition of anti-IL-6. IgA levels were decreased to a lesser extent in PP cells cultured with LPS and in spleen cells cultured with PMA + ION from VT-exposed mice to which anti-IL-2 Ab was added. Thus, the potential for enhanced IgA production exists in lymphocytes as early as 2 h and as late as 24 h after a single oral exposure to VT and this may be related to the increased capacity to secrete helper cytokines of T cell and macrophage origin. Taken together, the results suggest that the superinduction of cytokine expression may, in part, be responsible for upregulation of IgA secretion in mice exposed orally to VT.


Journal of Toxicology and Environmental Health | 2002

EFFECTS OF VOMITOXIN (DEOXYNIVALENOL) ON THE BINDING OF TRANSCRIPTION FACTORS AP-1, NF-κB, AND NF-IL6 IN RAW 264.7 MACROPHAGE CELLS

Hui Ren Zhou; James J. Pestka

The effects of vomitoxin (VT) on the binding activity of three transcription factors critical to pro-inflammatory cytokine regulation were assessed in the RAW 264.7 murine macrophage model by electrophoretic mobility shift assay (EMSA). When cells were treated with 100 to 250 ng/ml of VT, activator protein-1 (AP-1 binding) was increased after 2 and 8 h. This effect was potentiated when cells were coincubated with lipopolysaccharide (LPS) (synchronous model) but not when preincubated with LPS (delayed synchronous model). Supershift EMSA revealed that VT preferentially induced JunB, JunD, phosphorylated c-Jun, c-Fos, and Fra-2 binding activities of the AP-1 family. Nuclear factor s B (NF- s B) binding was increased at 2 and 8 h in cells subjected to synchronous and delayed synchronous VT exposure in the presence of LPS. Supershift EMSA indicated that the p-50 and c-Rel subunits of NF- s B/ Rel were specifically affected. Nuclear factor-IL6 (NF-IL6) binding was increased at 2 and 8 h with or without LPS in synchronous and delayed synchronous VT-exposure models. Here, the C/EBP g subunit was primarily involved in enhanced NF-IL6 binding. The capacity of VT to elevate binding of AP-1, NF- s B, and NF-IL6 may contribute to the VT-mediated cytokine up-regulation in vitro and in vivo. The observations that VT was active in synchronous and delayed synchronous models suggest that macrophages activated simultaneously or prior to toxin exposure were vulnerable to the effects of this trichothecene.


Toxicology and Applied Pharmacology | 2003

Kinetics of lipopolysaccharide-induced transcription factor activation/inactivation and relation to proinflammatory gene expression in the murine spleen

Hui Ren Zhou; Zahidul Islam; James J. Pestka

Bacterial lipopolysaccharide (LPS) elicits inflammation and endotoxic shock by inducing proinflammatory cytokine gene expression. The purpose of this study was to test the hypothesis that differential activation of transcription factor binding in the spleen correlates with proinflammatory cytokine gene expression in mice exposed to LPS. When proinflammatory cytokine expression in spleen was evaluated in mice injected ip with 4 mg/kg LPS over an 8-h period, tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6 mRNAs were elevated up to 5-, 6-, and 300-fold, respectively, over vehicle controls. Both TNF- alpha and IL-6 mRNA peaked at 2 h and begin to decline thereafter, whereas IL-1beta mRNA remained elevated from 2 to 8 h. The capacities of splenic nuclear proteins to bind to six different consensus transcriptional control motifs associated with proinflammatory cytokine promoters were also measured over 8 h. Electrophoretic mobility shift assay (EMSA) revealed that binding activity was markedly increased at 0.5 to 8 h for activator protein-1 (AP-1) as were CCAAT enhancer-binding protein (C/EBP) and nuclear factor kappaB (NF-kappaB) at 0.5 to 1.5 h. At 0.5 h, cyclic AMP response element (CRE)-binding protein (CREB) and binding was slightly elevated, whereas activator protein- 2 (AP-2) and specificity protein 1 (Sp1) binding were not affected. Antibody supershift EMSA and Western blot analysis confirmed that increased binding of these factors correlated with LPS-induced increases in nuclear concentrations of AP-1 (c-Jun, phosphorylated c-Jun, Jun D, and Jun B), C/EBPbeta, NF-kappaB (p50, p65, and c-Rel), CREB (CREB-1, CREB-2, and ATF-2), and AP-2alpha proteins. Remarkably, after 8 h, C/EBP, CREB, AP-2, and Sp1 binding activities were greatly depleted relative to both naive and corresponding vehicle controls. When mice were exposed to a second dose of LPS, 8 h after a 4 mg/kg priming dose, TNF-alpha and IL-6 mRNA responses were markedly impaired, suggesting that the mice were endotoxin tolerant at this time point. Taken together, the quiescent, active, and suppressive phases of transcription factor binding observed in this model were highly consistent with the rapid transient nature of LPS-induced proinflammatory cytokine expression in vivo as well as tolerance to secondary LPS exposure.


Toxicological Sciences | 2012

Targets and Intracellular Signaling Mechanisms for Deoxynivalenol-Induced Ribosomal RNA Cleavage

Kaiyu He; Hui Ren Zhou; James J. Pestka

Abstract The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.


Toxicology and Applied Pharmacology | 2014

Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse

Wenda Wu; Kaiyu He; Hui Ren Zhou; Franz Berthiller; Gerhard Adam; Yoshiko Sugita-Konishi; Maiko Watanabe; Anthony Krantis; Tony Durst; Haibin Zhang; James J. Pestka

The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528s effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.


Toxicological Sciences | 2014

Role of Cholecystokinin in Anorexia Induction Following Oral Exposure to the 8-Ketotrichothecenes Deoxynivalenol, 15-Acetyldeoxynivalenol, 3-Acetyldeoxynivalenol, Fusarenon X, and Nivalenol

Wenda Wu; Hui Ren Zhou; Kaiyu He; Xiao Pan; Yoshiko Sugita-Konishi; Maiko Watanabe; Haibin Zhang; James J. Pestka

Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.


Toxicological Sciences | 2013

Peptide YY3–36 and 5-Hydroxytryptamine Mediate Emesis Induction by Trichothecene Deoxynivalenol (Vomitoxin)

Wenda Wu; Melissa A. Bates; Steven J. Bursian; Brenna M. Flannery; Hui Ren Zhou; Jane E. Link; Haibin Zhang; James J. Pestka

Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DONs emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis.


Toxicological Sciences | 2015

Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel

Hui Ren Zhou; James J. Pestka

Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models.

Collaboration


Dive into the Hui Ren Zhou's collaboration.

Top Co-Authors

Avatar

James J. Pestka

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Wenda Wu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ding Yan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kaiyu He

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Xiao Pan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jane E. Link

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Qunshan Jia

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zahidul Islam

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Haibin Zhang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge