Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui-Wen Wu is active.

Publication


Featured researches published by Hui-Wen Wu.


Nature Biotechnology | 2006

Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance

Qi-Wen Niu; Shih-Shun Lin; José Luis Reyes; Kuan-Chun Chen; Hui-Wen Wu; Shyi-Dong Yeh; Nam-Hai Chua

Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69159 and amiR-HC-Pro159 are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP159 targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69159 and amiR-HC-Pro159 from a dimeric pre-amiR-P69159/amiR-HC-Pro159 transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 °C, a temperature that compromises small interfering RNA–mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.


PLOS Pathogens | 2009

Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing

Shih-Shun Lin; Hui-Wen Wu; Santiago F. Elena; Kuan-Chun Chen; Qi-Wen Niu; Shyi-Dong Yeh; Chin-Chih Chen; Nam-Hai Chua

Plant microRNAs (miRNA) guide cleavage of target mRNAs by DICER-like proteins, thereby reducing mRNA abundance. Native precursor miRNAs can be redesigned to target RNAs of interest, and one application of such artificial microRNA (amiRNA) technology is to generate plants resistant to pathogenic viruses. Transgenic Arabidopsis plants expressing amiRNAs designed to target the genome of two unrelated viruses were resistant, in a highly specific manner, to the appropriate virus. Here, we pursued two different goals. First, we confirmed that the 21-nt target site of viral RNAs is both necessary and sufficient for resistance. Second, we studied the evolutionary stability of amiRNA-mediated resistance against a genetically plastic RNA virus, TuMV. To dissociate selective pressures acting upon protein function from those acting at the RNA level, we constructed a chimeric TuMV harboring a 21-nt, amiRNA target site in a non-essential region. In the first set of experiments designed to assess the likelihood of resistance breakdown, we explored the effect of single nucleotide mutation within the target 21-nt on the ability of mutant viruses to successfully infect amiRNA-expressing plants. We found non-equivalency of the target nucleotides, which can be divided into three categories depending on their impact in virus pathogenicity. In the second set of experiments, we investigated the evolution of the virus mutants in amiRNA-expressing plants. The most common outcome was the deletion of the target. However, when the 21-nt target was retained, viruses accumulated additional substitutions on it, further reducing the binding/cleavage ability of the amiRNA. The pattern of substitutions within the viral target was largely dominated by G to A and C to U transitions.


Phytopathology | 2007

Modifications of the Helper Component-Protease of Zucchini yellow mosaic virus for Generation of Attenuated Mutants for Cross Protection Against Severe Infection

Shih-Shun Lin; Hui-Wen Wu; Fuh-Jyh Jan; Roger F. Hou; Shyi-Dong Yeh

ABSTRACT A nonpathogenic mild strain is essential for control of plant viruses by cross protection. Three amino acid changes, Arg(180)-->Ile(180) (GA mutation), Phe(205)-->Leu(205) (GB mutation), and Glu(396)-->Asn(396) (GC mutation), of the conserved motifs of the helper component-protease (HC-Pro) of a severe strain TW-TN3 of Zucchini yellow mosaic virus (ZYMV), a member of the genus Potyvirus, were generated from an infectious cDNA clone that carried a green fluorescent protein reporter. The infectivity of individual mutants containing single, double, or triple mutations was assayed on local and systemic hosts. On Chenopodium quinoa plants, the GB mutant induced necrotic lesions; the GA, GC, and GBC mutants induced chlorotic spots; and the GAB and GAC mutants induced local infection only visualized by fluorescence microscopy. On squash plants, the GA, GB, GC, and GBC mutants caused milder mosaic; the GAC mutant induced slight leaf mottling followed by recovering; and the GAB mutant did not induce conspicuous symptoms. Also, the GAC mutant, but not the GAB mutant, conferred complete cross protection against the parental virus carrying a mite allergen as a reporter. When tested on transgene-silenced transgenic squash, the ability of posttranscriptional gene silencing suppression of the mutated HC-Pro of GAC was not significantly affected. We concluded that the mutations of the HC-Pro of ZYMV reduce the degrees of pathogenicity on squash and also abolish the ability for eliciting the hypersensitive reaction on C. quinoa, and that the mutant GAC is a useful mild strain for cross protection.


Molecular Plant-microbe Interactions | 2010

Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development.

Hui-Wen Wu; Shih-Shun Lin; Kuan-Chun Chen; Shyi-Dong Yeh; Nam-Hai Chua

Helper component-proteinase (HC-Pro), the gene-silencing suppressor of Potyvirus spp., interferes with microRNA (miRNA) and short-interfering RNA (siRNA) pathways. Our previous studies showed that three mutations of highly conserved amino acids of HC-Pro, R(180)I (mutation A), F(205)L (B), and E(396)N (C), of Zucchini yellow mosaic virus (ZYMV) affect symptom severity and viral pathogenicity. The mutant ZYMV GAC (ZGAC) with double mutations, R(180)I/E(396)N, induces transient leaf mottling in host plants followed by recovery. This mutant confers complete cross protection against subsequent infection by the parental ZYMV (ZG) strain. Here, we sought to obtain molecular evidence on the roles of the three highly conserved amino acids of HC-Pro in miRNA and siRNA pathways using transgenic Arabidopsis plants expressing comparable levels of wild-type and mutant HC-Pro proteins. We demonstrated that amino acid residues 180, 205, and 396 of HC-Pro are critical for suppression of miRNA, trans-acting siRNA (ta-siRNA), and virus-induced gene silencing (VIGS) pathways but not for sense-post transcriptional gene silencing (s-PTGS). Because the HC-Pro double mutant (R(180)I/E(396)N) does not interfere with miRNA and ta-siRNA pathways, the ZGAC mutant virus elicits only attenuated symptoms. Furthermore, the recovery seen on ZGAC-infected plants likely results from the weak VIGS suppression by the HC-Pro double AC mutant. Thus, through manipulating these three conserved amino acids on HC-Pro, symptom severity of diseases caused by Potyvirus spp. can be modulated to generate useful cross protectants for field application. Although some of our mutated HC-Pro proteins do not interfere with miRNA and ta-siRNA pathways, they still retain the ability to suppress s-PTGS.


Plant Cell Reports | 2009

Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method

Hui-Wen Wu; Tsong-Ann Yu; Joseph A. J. Raja; Hui-Chin Wang; Shyi-Dong Yeh

Production of melon (Cucumis melo L.) worldwide is often limited by the potyvirus, Zucchini yellow mosaic virus (ZYMV). In order to engineer melon lines resistant to ZYMV, a construct containing the translatable coat protein (CP) sequence coupled with the 3′ non-translatable region of the virus was generated and used to transform an elite cultivar of oriental melon (Silver light) mediated by Agrobacterium using an improved cotyledon-cutting method. Removal of 1-mm portion from the proximal end of cotyledons greatly increased the frequency of transgenic regenerants by significantly decreasing the incidence of false positive and aberrant transformants. Results of greenhouse evaluation of transgenic lines by mechanical challenge with ZYMV identified transgenic lines exhibiting different levels of resistance or complete immunity to ZYMV. Southern hybridization of transgenic lines revealed random insertion of the transgene in host genome, with insert numbers differing among transformants. Northern hybridization revealed great variations in the levels of accumulation of the transgene transcripts among transgenic lines, and evidenced an inverse correlation of the levels of accumulation of transgene transcript to the degrees of virus resistance, indicating post-transcriptional gene silencing (PTGS)-mediated transgenic resistance. These transgenic melon lines with high degrees of resistance to ZYMV have great potential for the control of ZYMV in East Asia.


Plant Biotechnology Reports | 2007

Strategies and mechanisms of plant virus resistance

Shih-Shun Lin; Rossana Henriques; Hui-Wen Wu; Qi-Wen Niu; Shyi-Dong Yeh; Nam-Hai Chua

Virus-induced diseases are responsible for major crop losses worldwide. A better understanding of plant defense mechanisms would lead to the development of novel strategies for effective plant protection. Early protein-based approaches relied mostly on the expression of transgenic coat protein (CP) to block the progression of the virus infectious process. Other strategies exploit the plant’s innate defense mechanisms to combat invading viral pathogens. For example, the RNA-based resistance makes use of the plant post-transcriptional gene silencing (PTGS) mechanism to degrade viral RNAs. In cross-protection the prior inoculation with a mild viral strain confers resistance against a severe strain. Although the molecular detail of cross-protection is not fully understood, it is likely to be comprised of both protein- and RNA-based mechanisms, as well as some other unknown processes. In this review article we compare the benefits and challenges of these different viral-resistance approaches. Furthermore, we discuss the development of a new approach based on the plant’s miRNA pathway. Artificial miRNAs with sequences complementary to viral sequences have been successfully used to generate virus resistance. This novel anti-viral strategy, which has the advantage of reducing possible bio-safety risks associated with protein- and RNA-based strategies, is a first step toward designing environmentally friendly virus resistance in transgenic crops.


PLOS ONE | 2014

Broad-Spectrum Transgenic Resistance against Distinct Tospovirus Species at the Genus Level

Jui-Chu Peng; Tsung-Chi Chen; Joseph A. J. Raja; Ching-Fu Yang; Wan-Chu Chien; Chen-Hsuan Lin; Fang-Lin Liu; Hui-Wen Wu; Shyi-Dong Yeh

Thrips-borne tospoviruses cause severe damage to crops worldwide. In this investigation, tobacco lines transgenic for individual WLm constructs containing the conserved motifs of the L RNA-encoded RNA-dependent RNA polymerase (L) gene of Watermelon silver mottle virus (WSMoV) were generated by Agrobacterium-mediated transformation. The WLm constructs included: (i) translatable WLm in a sense orientation; (ii) untranslatable WLmt with two stop codons; (iii) untranslatable WLmts with stop codons and a frame-shift; (iv) untranslatable antisense WLmA; and (v) WLmhp with an untranslatable inverted repeat of WLm containing the tospoviral S RNA 3′-terminal consensus sequence (5′-ATTGCTCT-3′) and an NcoI site as a linker to generate a double-stranded hairpin transcript. A total of 46.7–70.0% transgenic tobacco lines derived from individual constructs showed resistance to the homologous WSMoV; 35.7–100% plants of these different WSMoV-resistant lines exhibited broad-spectrum resistance against four other serologically unrelated tospoviruses Tomato spotted wilt virus, Groundnut yellow spot virus, Impatiens necrotic spot virus and Groundnut chlorotic fan-spot virus. The selected transgenic tobacco lines also exhibited broad-spectrum resistance against five additional tospoviruses from WSMoV and Iris yellow spot virus clades, but not against RNA viruses from other genera. Northern analyses indicated that the broad-spectrum resistance is mediated by RNA silencing. To validate the L conserved region resistance in vegetable crops, the constructs were also used to generate transgenic tomato lines, which also showed effective resistance against WSMoV and other tospoviruses. Thus, our approach of using the conserved motifs of tospoviral L gene as a transgene generates broad-spectrum resistance against tospoviruses at the genus level.


Plant Disease | 2010

Double-virus resistance of transgenic oriental melon conferred by untranslatable chimeric construct carrying partial coat protein genes of two viruses.

Hui-Wen Wu; Tsong-Ann Yu; Joseph A. J. Raja; Serene Judith Christopher; Sine-Lan Wang; Shyi-Dong Yeh

Production of oriental melon (Cucumis melo var. makuwa) in Asia is often limited by two potyviruses, the watermelon infecting type of Papaya ringspot virus (PRSV W) and Zucchini yellow mosaic virus (ZYMV). In order to engineer transgenic resistance to these two viruses, an untranslatable chimeric DNA comprising partial coat protein (CP) sequences of ZYMV and PRSV W was constructed and used to transform the elite cultivar of oriental melon, Silver Light, by Agrobacterium. Greenhouse evaluation by mechanical challenges with ZYMV and PRSV W, alone or together, identified transgenic lines exhibiting different levels of resistance or complete immunity to ZYMV and PRSV W. Molecular analyses of transgenic lines revealed random insertion of transgene into the host genome, with insert numbers differing among transformants. There was no correlation between transgene insert numbers and the degree of resistance expressed by transgenic lines. The levels of accumulation of transgene transcript varied among transgenic lines. However, an inverse correlation was observed between the level of accumulation of transgene transcripts and the degree of virus resistance. Moreover, small interfering (si)RNA was readily detected from the immune and highly resistant lines, but not from the weakly resistant and susceptible lines. Altogether, our results indicated that RNA-mediated post-transcriptional gene silencing (PTGS) was the underlying mechanism of double-virus resistance of the transgenic melon lines. The segregation analysis of the R1 progeny of the immune line ZW-1 indicated that the single inserted transgene is associated with the resistance phenotype and is inherited as a dominant trait. These transgenic melon lines with high degrees of resistance to ZYMV and PRSV W have great potential for the control of ZYMV and PRSV W in C. melo in Asia and elsewhere.


Molecular Plant-microbe Interactions | 2014

Genetic Analyses of the FRNK Motif Function of Turnip mosaic virus Uncover Multiple and Potentially Interactive Pathways of Cross-Protection

Yi-Jung Kung; Pin-Chun Lin; Shyi-Dong Yeh; Syuan-Fei Hong; Nam-Hai Chua; Li-Yu Liu; Chan-Pin Lin; Yu-Hsin Huang; Hui-Wen Wu; Chin-Chih Chen; Shih-Shun Lin

Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-Pro(K)) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-Pro(K) loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and -independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.


PLOS ONE | 2015

Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity

Chung-Hao Huang; Weng-Rong Hsiao; Ching-Wen Huang; Kuan-Chun Chen; Shih-Shun Lin; Tsung-Chi Chen; Joseph A. J. Raja; Hui-Wen Wu; Shyi-Dong Yeh

The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) (109KFTMHNQ117), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif (397IYFL400) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

Collaboration


Dive into the Hui-Wen Wu's collaboration.

Top Co-Authors

Avatar

Shyi-Dong Yeh

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Shih-Shun Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi-Wen Niu

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Kuan-Chun Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Joseph A. J. Raja

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Chin-Chih Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Ching-Fu Yang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Chung-Hao Huang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Yi-Jung Kung

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge