Hui Zang
Sprint Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui Zang.
IEEE ACM Transactions on Networking | 2003
Hongyue Zhu; Hui Zang; Keyao Zhu; Biswanath Mukherjee
As the operation of our fiber-optic backbone networks migrates from interconnected SONET rings to arbitrary mesh topology, traffic grooming on wavelength-division multiplexing (WDM) mesh networks becomes an extremely important research problem. To address this problem, we propose a new generic graph model for traffic grooming in heterogeneous WDM mesh networks. The novelty of our model is that, by only manipulating the edges of the auxiliary graph created by our model and the weights of these edges, our model can achieve various objectives using different grooming policies, while taking into account various constraints such as transceivers, wavelengths, wavelength-conversion capabilities, and grooming capabilities. Based on the auxiliary graph, we develop an integrated traffic-grooming algorithm (IGABAG) and an integrated grooming procedure (INGPROC) which jointly solve several traffic-grooming subproblems by simply applying the shortest-path computation method. Different grooming policies can be represented by different weight-assignment functions, and the performance of these grooming policies are compared under both nonblocking scenario and blocking scenario. The IGABAG can be applied to both static and dynamic traffic grooming. In static grooming, the traffic-selection scheme is key to achieving good network performance. We propose several traffic-selection schemes based on this model and we evaluate their performance for different network topologies.
IEEE Communications Magazine | 2001
Hui Zang; Jason P. Jue; Laxman H. Sahasrabuddhe; Ramu Ramamurthy; Biswanath Mukherjee
In wavelength-routed WDM networks, a control mechanism is required to set up and take down all-optical connections. Upon the arrival of a connection request, this mechanism must be able to select a route, assign a wavelength to the connection, and configure the appropriate optical switches in the network. The mechanism must also be able to provide updates to reflect which wavelengths are currently being used on each link so that nodes may make informed routing decisions. In this work, we review control mechanisms proposed in the literature. We also investigate and compare two different distributed control mechanisms for establishing all-optical connections in a wavelength-routed WDM network: an approach based on link-state routing, and one based on distance-vector routing.
Journal of Lightwave Technology | 2004
Canhui Sam Ou; Jing Zhang; Hui Zang; Laxman H. Sahasrabuddhe; Biswanath Mukherjee
This paper investigates the problem of dynamic survivable lightpath provisioning in optical mesh networks employing wavelength-division multiplexing (WDM). In particular, we focus on shared-path protection because it is resource efficient due to the fact that backup paths can share wavelength links when their corresponding working paths are mutually diverse. Our main contributions are as follows. 1) First, we prove that the problem of finding an eligible pair of working and backup paths for a new lightpath request requiring shared-path protection under the current network state is NP-complete. 2) Then, we develop a heuristic, called CAFES, to compute a feasible solution with high probability. 3) Finally, we design another heuristic, called OPT, to optimize resource consumption for a given solution. The merits of our approaches are that they capture the essence of shared-path protection and approach to optimal solutions without enumerating paths. We evaluate the effectiveness of our heuristics and the results are found to be promising.
internet measurement conference | 2006
Jianning Mai; Chen-Nee Chuah; Ashwin Sridharan; Tao Ye; Hui Zang
Sampling techniques are widely used for traffic measurements at high link speed to conserve router resources. Traditionally, sampled traffic data is used for network management tasks such as traffic matrix estimations, but recently it has also been used in numerous anomaly detection algorithms, as security analysis becomes increasingly critical for network providers. While the impact of sampling on traffic engineering metrics such as flow size and mean rate is well studied, its impact on anomaly detection remains an open question.This paper presents a comprehensive study on whether existing sampling techniques distort traffic features critical for effective anomaly detection. We sampled packet traces captured from a Tier-1 IP-backbone using four popular methods: random packet sampling, random flow sampling, smart sampling, and sample-and-hold. The sampled data is then used as input to detect two common classes of anomalies: volume anomalies and port scans. Since it is infeasible to enumerate all existing solutions, we study three representative algorithms: a wavelet-based volume anomaly detection and two portscan detection algorithms based on hypotheses testing. Our results show that all the four sampling methods introduce fundamental bias that degrades the performance of the three detection schemes, however the degradation curves are very different. We also identify the traffic features critical for anomaly detection and analyze how they are affected by sampling. Our work demonstrates the need for better measurement techniques, since anomaly detection operates on a drastically different information region, which is often overlooked by existing traffic accounting methods that target heavy-hitters.
IEEE ACM Transactions on Networking | 2003
Hui Zang; Canhui Ou; Biswanath Mukherjee
This study investigates the problem of fault management in a wavelength-division multiplexing (WDM)-based optical mesh network in which failures occur due to fiber cuts. In reality, bundles of fibers often get cut at the same time due to construction or destructive natural events, such as earthquakes. Fibers laid down in the same duct have a significant probability to fail at the same time. When path protection is employed, we require the primary path and the backup path to be duct-disjoint, so that the network is survivable under single-duct failures. Moreover, if two primary paths go through any common duct, their backup paths cannot share wavelengths on common links. This study addresses the routing and wavelength-assignment problem in a network with path protection under duct-layer constraints. Off-line algorithms for static traffic is developed to combat single-duct failures. The objective is to minimize total number of wavelengths used on all the links in the network. Both integer linear programs and a heuristic algorithm are presented and their performance is compared through numerical examples.
IEEE Journal on Selected Areas in Communications | 2003
Canhui Ou; Keyao Zhu; Hui Zang; Laxman H. Sahasrabuddhe; Biswanath Mukherjee
We investigate the survivable traffic-grooming problem for optical mesh networks employing wavelength-division multiplexing (WDM). In the dynamic provisioning context, a typical connection request may require bandwidth less than that of a wavelength channel, and it may also require protection from network failures, typically fiber cuts. Based on a generic grooming-node architecture, we propose three approaches for grooming a connection request with shared protection: protection-at-lightpath level (PAL); mixed protection-at-connection level (MPAC); separate protection-at-connection level (SPAC). In shared-mesh protection, backup paths can share resources as long as their corresponding working paths are unlikely to fail simultaneously. These three schemes explore different ways of backup sharing, and they trade-off between wavelengths and grooming ports. Since the existing version of the problem for provisioning one connection request with shared protection is NP-complete, we propose effective heuristics. Under todays typical connection-bandwidth distribution where lower bandwidth connections outnumber higher bandwidth connections, we find the following: 1) it is beneficial to groom working paths and backup paths separately, as in PAL and SPAC; 2) separately protecting each individual connection, i.e., SPAC, yields the best performance when the number of grooming ports is sufficient; 3) protecting each specific lightpath, i.e., PAL, achieves the best performance when the number of grooming ports is moderate or small.
IEEE Journal on Selected Areas in Communications | 2003
Keyao Zhu; Hui Zang; Biswanath Mukherjee
This paper investigates the characteristics and performance of different optical grooming switches, i.e., optical cross-connects (OXCs) capable of traffic grooming, under a dynamic traffic environment. We present four optical grooming-OXC architectures, namely, single-hop grooming OXC, multihop partial-grooming OXC, multihop full-grooming OXC, and light-tree-based source-node grooming OXC. After exploring their grooming capabilities, we propose three grooming schemes and two corresponding algorithms, grooming using auxiliary graph and grooming using light-tree. Through the algorithms, we evaluate the performance of different optical grooming OXCs in a dynamic traffic environment under different connection bandwidth-granularity distributions. Our investigation uncovers the following results: (1) the multihop full-grooming OXC can achieve the best network performance, but it may encounter cost and scalability constraints; (2) by using significantly less low-granularity electronic processing and intelligent traffic-grooming algorithms, the multihop partial-grooming OXC shows reasonable network performance and, hence, can be viewed as a cost-effective alternative when a network node does not require full-grooming capability; (3) the single-hop grooming OXC may cause a large amount of capacity waste and lead to poor network performance; and (4) through its multicast capability, a light-tree-based source-node grooming OXC can significantly out-perform the performance of a single-hop grooming OXC in terms of network throughput and network resource efficiency. From our results, we also observe that the connection bandwidth-granularity distribution has a large impact on network throughput and network resource efficiency and, therefore, should be carefully considered for network design and traffic provisioning.
global communications conference | 2002
Hongyue Zhu; Hui Zang; Keyao Zhu; Biswanath Mukherjee
We employ a new, generic graph model for dynamic traffic grooming in WDM mesh networks. The novelty of this model is that, by only manipulating the edges of an auxiliary graph created by the model and the weights of these edges, the model can achieve various objectives using different grooming policies, while taking into account various constraints. Based on the auxiliary graph, we develop a dynamic traffic-grooming algorithm. Different grooming policies can be implemented by different weight functions assigned to the edges in the auxiliary graph. We propose four fixed grooming policies and an adaptive grooming policy (AGP), and our results show that AGP outperforms the fixed grooming policies.
acm/ieee international conference on mobile computing and networking | 2008
Xin Liu; Ashwin Sridharan; Sridhar Machiraju; Mukund Seshadri; Hui Zang
We present an experimental characterization of the physical and MAC layers in CDMA 1xEV-DO and their impact on transport layer performance. The 1xEV-DO network is currently the fastest mobile broadband cellular network, offering data rates of up to 3.1 Mbps for both stationary and mobile users. These rates are achieved by using novel capacity enhancement techniques at the lower layers. Specifically, 1xEV-DO incorporates rapid channel rate adaptation in response to signal conditions, and opportunistic scheduling to exploit channel fluctuations. Although shown to perform well in isolation, there is no comprehensive literature that examines the impact of these features on transport layer and application performance in real networks. We take the first step in addressing this issue through a large set of experiments conducted on a commercial 1xEV-DO network. Our evaluation includes both stationary and mobile scenarios wherein we transferred data using four popular transport protocols: TCPReno, TCP-Vegas, TCP-Westwood, and TCP-Cubic, and logged detailed measurements about wireless channel level characteristics as well as transport layer performance. We analyzed data from several days of experiments and inferred the properties of the physical, MAC and transport layers, as well as potential interactions between them. We find that the wireless channel data rate shows significant variability over long time scales on the order of hours, but retains high memory and predictability over small time scales on the order of milliseconds. We also find that loss-based TCP variants are largely unaffected by channel variations due to the presence of large buffers, and hence able to achieve in excess of 80% of the system capacity.
acm/ieee international conference on mobile computing and networking | 2007
Hui Zang; Jean-Chrysostome Bolot
Locating mobile users and devices efficiently is a critical operation in cellular networks. This is done using a combination of location update(by the mobile) and paging (by the network). The paging scheme determines how and where to search for a mobile user given the latestlocation update information from that user. In this paper, we considerhow to increase the efficiency of the paging scheme. Much previous work has relied on simulation or modeling to design and evaluate the performance of proposed paging schemes. We take a different, data-driven approach in how we design and evaluate our solution. Specifically, we mine more than 300 million call records from a large cellular operator to characterize user mobility and create mobility profiles. We then develop a family ofprofile-based paging techniques, considering both static schemes and dynamic schemes which adapt as user profiles continuously get updated. We find that our paging techniques can dramatically reducesignaling load (up to 80%) with minimal increase in paging delay (usually less than 10%).