Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huib N. Caron is active.

Publication


Featured researches published by Huib N. Caron.


Biochemical Journal | 2003

HISTONE DEACETYLASES (HDACS): CHARACTERIZATION OF THE CLASSICAL HDAC FAMILY

Annemieke J.M. de Ruijter; Albert H. van Gennip; Huib N. Caron; André B.P. van Kuilenburg

Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.


PLOS ONE | 2008

Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features

Marcel Kool; Jan Koster; Jens Bunt; Nancy E. Hasselt; Arjan Lakeman; Peter van Sluis; Dirk Troost; Netteke Schouten-van Meeteren; Huib N. Caron; Jacqueline Cloos; Alan Mršić; Bauke Ylstra; Wieslawa A. Grajkowska; Wolfgang Hartmann; Torsten Pietsch; David W. Ellison; Steven C. Clifford; Rogier Versteeg

Background Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. Methods and Findings To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in β-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. Conclusions The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.


Nature | 2012

Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes

Jan J. Molenaar; Jan Koster; Danny A. Zwijnenburg; Peter van Sluis; Linda J. Valentijn; Ida van der Ploeg; Mohamed Hamdi; Johan van Nes; Bart A. Westerman; Jennemiek van Arkel; Marli E. Ebus; Franciska Haneveld; Arjan Lakeman; Linda Schild; Piet Molenaar; Peter Stroeken; Max M. van Noesel; Ingrid Øra; Evan E. Santo; Huib N. Caron; Ellen M. Westerhout; Rogier Versteeg

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


The EMBO Journal | 2001

N‐myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis

Kathy Boon; Huib N. Caron; Ronald van Asperen; Linda J. Valentijn; Marie Christine Hermus; Peter van Sluis; Ilja Roobeek; Isabel Weis; P.A. Voûte; Manfred Schwab; Rogier Versteeg

The myc oncogenes are frequently activated in human tumors, but there is no comprehensive insight into the target genes and downstream cellular pathways of these transcription factors. We applied serial analysis of gene expression (SAGE) to identify targets of N‐myc in neuroblastomas. Analysis of 42 000 mRNA transcript tags in SAGE libraries of N‐myc‐ transfected and control neuroblastoma cells revealed 114 up‐regulated genes. The majority of these genes have a role in ribosome assembly and activity. Northern blot analysis confirmed up‐regulation of all tested transcripts. Induction was complete within 4 h after N‐myc expression. The large majority of the ribosomal proteins were induced, as well as genes controlling rRNA maturation. Cellular rRNA content was 45% induced. SAGE libraries and northern blot analysis confirmed up‐regulation of many of these genes in N‐myc‐amplified neuroblastomas. As N‐myc can functionally replace c‐myc, we analyzed whether N‐myc targets were induced by c‐myc as well. Approximately 40% of these N‐myc targets were up‐regulated in a c‐myc‐transfected melanoma cell line. These data suggest that myc genes function as major regulators of the protein synthesis machinery.


Hematology-oncology Clinics of North America | 2010

Neuroblastoma: Biology, Prognosis, and Treatment

Julie R. Park; Angelika Eggert; Huib N. Caron

Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Neuroblastoma is a heterogeneous malignancy with prognosis ranging from near uniform survival to high risk for fatal demise. Neuroblastoma serves as a paradigm for the prognostic utility of biologic and clinical data and the potential to tailor therapy for patient cohorts at low, intermediate, and high risk for recurrence. This article summarizes our understanding of neuroblastoma biology and prognostic features and discusses their impact on current and proposed risk stratification schemas, risk-based therapeutic approaches, and the development of novel therapies for patients at high risk for failure.


Journal of Clinical Oncology | 2012

Pharmacogenomic Prediction of Anthracycline-Induced Cardiotoxicity in Children

Henk Visscher; Colin Ross; S. Rod Rassekh; Amina Barhdadi; Marie-Pierre Dubé; Hesham Al-Saloos; George S. Sandor; Huib N. Caron; Elvira C. van Dalen; Leontien C. M. Kremer; Helena J. van der Pal; Andrew M.K. Brown; Paul C. Rogers; Michael Phillips; Michael J. Rieder; Bruce Carleton; Michael R. Hayden

PURPOSE Anthracycline-induced cardiotoxicity (ACT) is a serious adverse drug reaction limiting anthracycline use and causing substantial morbidity and mortality. Our aim was to identify genetic variants associated with ACT in patients treated for childhood cancer. PATIENTS AND METHODS We carried out a study of 2,977 single-nucleotide polymorphisms (SNPs) in 220 key drug biotransformation genes in a discovery cohort of 156 anthracycline-treated children from British Columbia, with replication in a second cohort of 188 children from across Canada and further replication of the top SNP in a third cohort of 96 patients from Amsterdam, the Netherlands. RESULTS We identified a highly significant association of a synonymous coding variant rs7853758 (L461L) within the SLC28A3 gene with ACT (odds ratio, 0.35; P = 1.8 × 10(-5) for all cohorts combined). Additional associations (P < .01) with risk and protective variants in other genes including SLC28A1 and several adenosine triphosphate-binding cassette transporters (ABCB1, ABCB4, and ABCC1) were present. We further explored combining multiple variants into a single-prediction model together with clinical risk factors and classification of patients into three risk groups. In the high-risk group, 75% of patients were accurately predicted to develop ACT, with 36% developing this within the first year alone, whereas in the low-risk group, 96% of patients were accurately predicted not to develop ACT. CONCLUSION We have identified multiple genetic variants in SLC28A3 and other genes associated with ACT. Combined with clinical risk factors, genetic risk profiling might be used to identify high-risk patients who can then be provided with safer treatment options.


Nature Genetics | 2012

LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression

Jan J. Molenaar; Raquel Domingo-Fernández; Marli E. Ebus; Sven Lindner; Jan Koster; Ksenjia Drabek; Pieter Mestdagh; Peter van Sluis; Linda J. Valentijn; Johan van Nes; Marloes Broekmans; Franciska Haneveld; Richard Volckmann; Isabella Bray; Lukas C. Heukamp; Annika Sprüssel; Theresa Thor; Kristina Kieckbusch; Ludger Klein-Hitpass; Matthias Fischer; Jo Vandesompele; Alexander Schramm; Max M. van Noesel; Luigi Varesio; Franki Speleman; Angelika Eggert; Raymond L. Stallings; Huib N. Caron; Rogier Versteeg; Johannes H. Schulte

LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B–let-7–MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.


Pediatric Clinics of North America | 2008

Neuroblastoma: biology, prognosis, and treatment

Julie R. Park; Angelika Eggert; Huib N. Caron

Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Neuroblastoma is a heterogeneous malignancy with prognosis ranging from near uniform survival to high risk for fatal demise. Neuroblastoma serves as a paradigm for the prognostic utility of biologic and clinical data and the potential to tailor therapy for patient cohorts at low, intermediate, and high risk for recurrence. This article summarizes our understanding of neuroblastoma biology and prognostic features and discusses their impact on current and proposed risk stratification schemas, risk-based therapeutic approaches, and the development of novel therapies for patients at high risk for failure.


Journal of Clinical Oncology | 2012

High Risk of Symptomatic Cardiac Events in Childhood Cancer Survivors

Helena J. van der Pal; Elvira C. van Dalen; Evelien van Delden; Irma W.E.M. van Dijk; Wouter E. Kok; Ronald B. Geskus; Elske Sieswerda; Foppe Oldenburger; Caro C.E. Koning; Flora E. van Leeuwen; Huib N. Caron; Leontien C. M. Kremer

PURPOSE To evaluate the long-term risk for validated symptomatic cardiac events (CEs) and associated risk factors in childhood cancer survivors (CCSs). PATIENTS AND METHODS We determined CEs grade 3 or higher: congestive heart failure (CHF), cardiac ischemia, valvular disease, arrhythmia and/or pericarditis (according to Common Terminology Criteria for Adverse Events [CTCAE], version 3.0) in a hospital-based cohort of 1,362 5-year CCSs diagnosed between 1966 and 1996. We calculated both marginal and cause-specific cumulative incidence of CEs and cause-specific cumulative incidence of separate events. We analyzed different risk factors in multivariable Cox regression models. RESULTS Overall, 50 CEs, including 27 cases of CHF, were observed in 42 survivors (at a median attained age of 27.1 years). The 30-year cause-specific cumulative incidence of CEs was significantly increased after treatment with both anthracyclines and cardiac irradiation (12.6%; 95% CI, 4.3% to 20.3%), after anthracyclines (7.3%; 95% CI, 3.8% to 10.7%), and after cardiac irradiation (4.0%; 95% CI, 0.5% to 7.4%) compared with other treatments. In the proportional hazards analyses, anthracycline (dose), cardiac irradiation (dose), combination of these treatments, and congenital heart disease were significantly associated with developing a CE. We demonstrated an exponential relationship between the cumulative anthracycline dose, cardiac irradiation dose, and risk of CE. CONCLUSION CCSs have a high risk of developing symptomatic CEs at an early age. The most common CE was CHF. Survivors treated with both anthracyclines and radiotherapy have the highest risk; after 30 years, one in eight will develop severe heart disease. The use of potentially cardiotoxic treatments should be reconsidered for high-risk groups, and frequent follow-up for high-risk survivors is needed.


Clinical Cancer Research | 2010

Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification

Sara De Brouwer; Katleen De Preter; Candy Kumps; Piotr Zabrocki; Michaël Porcu; Ellen M. Westerhout; Arjan Lakeman; Jo Vandesompele; Jasmien Hoebeeck; Tom Van Maerken; Anne De Paepe; Genevieve Laureys; Johannes H. Schulte; Alexander Schramm; Caroline Van den Broecke; Joëlle Vermeulen; Nadine Van Roy; Klaus Beiske; Marleen Renard; Rosa Noguera; Olivier Delattre; Isabelle Janoueix-Lerosey; Per Kogner; Tommy Martinsson; Akira Nakagawara; Miki Ohira; Huib N. Caron; Angelika Eggert; Jan Cools; Rogier Versteeg

Purpose: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. Experimental Design: The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. Results: ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. Conclusions: ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants. Clin Cancer Res; 16(17); 4353–62. ©2010 AACR.

Collaboration


Dive into the Huib N. Caron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Koster

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flora E. van Leeuwen

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge