Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huidong Shi is active.

Publication


Featured researches published by Huidong Shi.


Immunity | 2014

Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis

Nagendra Singh; Ashish Gurav; Sathish Sivaprakasam; Evan Brady; Ravi Padia; Huidong Shi; Muthusamy Thangaraju; Puttur D. Prasad; Santhakumar Manicassamy; David H. Munn; Jeffrey R. Lee; Stefan Offermanns; Vadivel Ganapathy

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Immunity | 2014

ArticleActivation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis

Nagendra Singh; Ashish Gurav; Sathish Sivaprakasam; Evan Brady; Ravi Padia; Huidong Shi; Muthusamy Thangaraju; Puttur D. Prasad; Santhakumar Manicassamy; David H. Munn; Jeffrey R. Lee; Stefan Offermanns; Vadivel Ganapathy

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Blood | 2009

Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells

Warren Fiskus; Yongchao Wang; Arun Sreekumar; Kathleen M. Buckley; Huidong Shi; Anand Jillella; Celalettin Ustun; Rekha Rao; Pravina Fernandez; Jianguang Chen; Ramesh Balusu; Sanjay Koul; Peter Atadja; Victor E. Marquez; Kapil N. Bhalla

The polycomb repressive complex (PRC) 2 contains 3 core proteins, EZH2, SUZ12, and EED, in which the SET (suppressor of variegation-enhancer of zeste-trithorax) domain of EZH2 mediates the histone methyltransferase activity. This induces trimethylation of lysine 27 on histone H3, regulates the expression of HOX genes, and promotes proliferation and aggressiveness of neoplastic cells. In this study, we demonstrate that treatment with the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) depletes EZH2 levels, and inhibits trimethylation of lysine 27 on histone H3 in the cultured human acute myeloid leukemia (AML) HL-60 and OCI-AML3 cells and in primary AML cells. DZNep treatment induced p16, p21, p27, and FBXO32 while depleting cyclin E and HOXA9 levels. Similar findings were observed after treatment with small interfering RNA to EZH2. In addition, DZNep treatment induced apoptosis in cultured and primary AML cells. Furthermore, compared with treatment with each agent alone, cotreatment with DZNep and the pan-histone deacetylase inhibitor panobinostat caused more depletion of EZH2, induced more apoptosis of AML, but not normal CD34(+) bone marrow progenitor cells, and significantly improved survival of nonobese diabetic/severe combined immunodeficiency mice with HL-60 leukemia. These findings indicate that the combination of DZNep and panobinostat is effective and relatively selective epigenetic therapy against AML cells.


BMC Medicine | 2010

Obesity related methylation changes in DNA of peripheral blood leukocytes

Xiaoling Wang; Haidong Zhu; Harold Snieder; Shaoyong Su; David H. Munn; Gregory A. Harshfield; Bernard L. Maria; Yanbin Dong; Frank A. Treiber; Bernard Gutin; Huidong Shi

BackgroundDespite evidence linking obesity to impaired immune function, little is known about the specific mechanisms. Because of emerging evidence that immune responses are epigenetically regulated, we hypothesized that DNA methylation changes are involved in obesity induced immune dysfunction and aimed to identify these changes.MethodWe conducted a genome wide methylation analysis on seven obese cases and seven lean controls aged 14 to 18 years from extreme ends of the obesity distribution and performed further validation of six CpG sites from six genes in 46 obese cases and 46 lean controls aged 14 to 30 years.ResultsIn comparison with the lean controls, we observed one CpG site in the UBASH3A gene showing higher methylation levels and one CpG site in the TRIM3 gene showing lower methylation levels in the obese cases in both the genome wide step (P = 5 × 10-6 and P = 2 × 10-5 for the UBASH3A and the TRIM3 gene respectively) and the validation step (P = 0.008 and P = 0.001 for the UBASH3A and the TRIM3 gene respectively).ConclusionsOur results provide evidence that obesity is associated with methylation changes in blood leukocyte DNA. Further studies are warranted to determine the causal direction of this relationship as well as whether such methylation changes can lead to immune dysfunction.See commentary: http://www.biomedcentral.com/1741-7015/8/88/abstract


American Journal of Pathology | 2003

Methylation Target Array for Rapid Analysis of CpG Island Hypermethylation in Multiple Tissue Genomes

Chuan-Mu Chen; Hsiao Ling Chen; Timothy H.C. Hsiau; Andrew H.A. Hsiau; Huidong Shi; Graham J.R. Brock; Susan H. Wei; Charles W. Caldwell; Pearlly S. Yan; Tim H M Huang

Hypermethylation of multiple CpG islands is a common event in cancer. To assess the prognostic values of this epigenetic alteration, we developed Methylation Target Array (MTA), derived from the concept of tissue microarray, for simultaneous analysis of DNA hypermethylation in hundreds of tissue genomes. In MTA, linker-ligated CpG island fragments were digested with methylation-sensitive endonucleases and amplified with flanking primers. A panel of 468 MTA amplicons, which represented the whole repertoire of methylated CpG islands in 93 breast tumors, 20 normal breast tissues, and 4 breast cancer cell lines, were arrayed on nylon membrane for probe hybridization. Positive hybridization signals detected in tumor amplicons, but not in normal amplicons, were indicative of aberrant hypermethylation in tumor samples. This is attributed to aberrant sites that were protected from methylation-sensitive restriction and were amplified by PCR in tumor samples, while the same sites were restricted and could not be amplified in normal samples. Hypermethylation frequencies of the 10 genes tested in breast tumors and cancer cell lines were 60% for GPC3, 58% for RASSF1A, 32% for 3OST3B, 30% for HOXA5, 28% for uPA, 25% for WT1, 23% for BRCA1, 9% for DAPK1, and 0% for KL. Furthermore, hypermethylation of 5 to 7 loci of these genes was significantly correlated with hormone receptor status, clinical stages, and ages at diagnosis of the patients analyzed. This novel approach thus provides an additional avenue for assessing clinicopathological consequences of DNA hypermethylation in breast cancer.


Cancer Research | 2007

Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia

Kristen H. Taylor; Keila Pena-Hernandez; J. Wade Davis; Gerald Arthur; Deiter J. Duff; Huidong Shi; Farah Rahmatpanah; Ozy Sjahputera; Charles W. Caldwell

This study examined DNA methylation associated with acute lymphoblastic leukemia (ALL) and showed that selected molecular targets can be pharmacologically modulated to reverse gene silencing. A CpG island (CGI) microarray containing more than 3,400 unique clones that span all human chromosomes was used for large-scale discovery experiments and led to 262 unique CGI loci being statistically identified as methylated in ALL lymphoblasts. The methylation status of 10 clones encompassing 11 genes (DCC, DLC-1, DDX51, KCNK2, LRP1B, NKX6-1, NOPE, PCDHGA12, RPIB9, ABCB1, and SLC2A14) identified as differentially methylated between ALL patients and controls was independently verified. Consequently, the methylation status of DDX51 was found to differentiate patients with B- and T-ALL subtypes (P = 0.011, Fishers exact test). Next, the relationship between methylation and expression of these genes was examined in ALL cell lines (NALM-6 and Jurkat) before and after treatments with 5-aza-2-deoxycytidine and trichostatin A. More than a 10-fold increase in mRNA expression was observed for two previously identified tumor suppressor genes (DLC-1 and DCC) and also for RPIB9 and PCDHGA12. Although the mechanisms that lead to the CGI methylation of these genes are unknown, bisulfite sequencing of the promoter of RPIB9 suggests that expression is inhibited by methylation within SP1 and AP2 transcription factor binding motifs. Finally, specific chromosomal methylation hotspots were found to be associated with ALL. This study sets the stage for acquiring a better biological understanding of ALL and for the identification of epigenetic biomarkers useful for differential diagnosis, therapeutic monitoring, and the detection of leukemic relapse.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells

Mary Zimmerman; Nagendra Singh; Pamela M. Martin; Muthusamy Thangaraju; Vadivel Ganapathy; Jennifer L. Waller; Huidong Shi; Keith D. Robertson; David H. Munn; Kebin Liu

Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Fas(lpr)) or FasL-deficient (Fas(gld)) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.


Epigenetics | 2013

A genome-wide methylation study on obesity: Differential variability and differential methylation

Xiaojing Xu; Shaoyong Su; Vernon A. Barnes; Carmen De Miguel; Jennifer S. Pollock; Dennis R. Ownby; Huidong Shi; Haidong Zhu; Harold Snieder; Xiaoling Wang

Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.


Journal of Translational Medicine | 2013

A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells

Daya Luo; James Wilson; Nikki Harvel; Jimei Liu; Lirong Pei; Shuang Huang; Lesleyann Hawthorn; Huidong Shi

In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the invasiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in invasive cell lines when compared to normal and less invasive cell lines. Transfection of miR-200c, miR-205, and miR-375 mimics into MDA-MB-231 cells led to the inhibition of in vitro cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that miR-200c plays a pivotal role in regulating the invasiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer invasiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.


Nature Communications | 2015

DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

Rajneesh Pathania; Selvakumar Elangovan; Ravi Padia; Pengyi Yang; Senthilkumar Cinghu; Rajalakshmi Veeranan-Karmegam; Pachiappan Arjunan; Jaya P. Gnana-Prakasam; Fulzele Sadanand; Lirong Pei; Chang Sheng Chang; Jeong Hyeon Choi; Huidong Shi; Santhakumar Manicassamy; Puttur D. Prasad; Suash Sharma; Vadivel Ganapathy; Raja Jothi; Muthusamy Thangaraju

Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

Collaboration


Dive into the Huidong Shi's collaboration.

Top Co-Authors

Avatar

Lirong Pei

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Jeong Hyeon Choi

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Eun Joon Lee

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Austin Y. Shull

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David H. Munn

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimei Liu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Wang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaoyong Su

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge