Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huihua Yuan is active.

Publication


Featured researches published by Huihua Yuan.


ACS Applied Materials & Interfaces | 2014

Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA-co-TMC for Bone Tissue Engineering

Min Bao; Xiangxin Lou; Qihui Zhou; Wen Dong; Huihua Yuan; Yanzhong Zhang

Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration).


Nanotechnology | 2012

Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

Hongju Peng; Zi Yin; Huanhuan Liu; Xiao Chen; Bei Feng; Huihua Yuan; Bo Su; Hongwei Ouyang; Yanzhong Zhang

Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.


Biomacromolecules | 2012

Acetic-Acid-Mediated Miscibility toward Electrospinning Homogeneous Composite Nanofibers of GT/PCL

Bei Feng; Hongbin Tu; Huihua Yuan; Hongju Peng; Yanzhong Zhang

In tissue engineering research, there has recently been considerable interest in using electrospun biomimetic nanofibers of hybrids, in particular, from natural and synthetic polymers for engineering different tissues. However, phase separation between a pair of much dissimilar polymers might give rise to detrimental influences on both the electrospinning process and the resultant fiber performance. A representative natural-synthetic hybrid of gelatin (GT) and polycaprolactone (PCL) (50:50) was employed to study the phase separation behavior in electrospinning of the GT/PCL composite fibers. Using trifluoroethanol (TFE) as the cosolvent of the two polymers, observation of visible sedimentation and flocculation from dynamic light scattering analysis of the GT/PCL/TFE mixture both showed that phase separation does occur in just a few hours. This consequently led to gradually deteriorated fiber morphologies (e.g., splash, fiber bonding, and varied fiber size) over time during electrospinning GT/PCL. Quantitative analysis also indicated that the ratio of GT to PCL in the resultant GT/PCL fibers was altered over time. To address the phase separation related issues, a tiny amount (<0.3%) of acetic acid was introduced to improve the miscibility, which enabled the originally turbid solution to become clear immediately and to be single-phase stable for more than 1 week. Nanofibers thus obtained also appeared to be thinner, smooth, and homogeneous with enhanced performance in wettability and mechanical properties. Given the versatility and widely uses of the electrospun GT/PCL and other similar natural-synthetic hybrid systems in constructing tissue-engineered scaffolds, this work may offer a facile and effective approach to achieve finer and compositionally homogeneous hybrid nanofibers for effective applications.


Journal of Materials Chemistry B | 2015

Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells

Qihui Zhou; Jing Xie; Min Bao; Huihua Yuan; Zhaoyang Ye; Xiangxin Lou; Yanzhong Zhang

In tissue engineering research, aligned electrospun ultrafine fibers have been shown to regulate cellular alignment and relevant functional expression, but the imposed effect of individual fiber surface nanotopography on cell behaviour has not been examined closely. This work investigates the impact of superimposing a nano-pore feature atop individual fiber surfaces on the responsive behaviour of human vascular smooth muscle cells (vSMCs) for blood vessel tissue engineering. Well-aligned ultrafine poly(l-lactic acid) (PLLA) microfibers with an average fiber diameter of ca. 1.6 μm were fabricated by using a novel stable jet electrospinning (SJES) method. Ellipse-shaped nano-pores with varied aspect ratios (defined as long-to-short axis ratio) of 2.7-3.9, corresponding to a surface nano-roughness in the range of 54.8-110.0 nm, were in situ generated onto individual fiber surfaces by varying ambient humidity from 45% to 75% during the SJES process. The presence of elliptical nano-pores on fiber surfaces affected the characteristic anisotropic wettability of the aligned PLLA fibers and contributed to greater protein adsorption (up to 17.59 μg mg-1). A 7 day in vitro assessment of human umbilical arterial SMCs cultured on these aligned nano-porous fiber substrates indicated that cellular responses were in close correlation with the elliptical nano-pore feature. A pronounced fiber surface nanotopography was superior in soliciting favorable cellular responses, leading to enhanced cell attachment, proliferation, alignment, expression of the vascular matrix proteins and maintenance of a contractile phenotype. This study thus suggests that introduction of an elliptical nano-pore feature to the aligned microfiber surfaces could provide additional dimensionality of topographical cues to modulate the vSMC responses when using the aligned electrospun ultrafine fibers for engineering vascular constructs.


Carbohydrate Polymers | 2015

Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility

Qin Li; Xianliu Wang; Xiangxin Lou; Huihua Yuan; Hongbin Tu; Biyun Li; Yanzhong Zhang

To improve durability in wet conditions, electrospun chitosan (CTS) nanofibers were submersed into PBS (pH 7.4) solutions containing varied amounts of genipin (GP 0.1, 0.5, and 1% w/v) for crosslinking treatment. GP-crosslinking allowed the electrospun CTS nanofibers to maintain their fibrous morphology in wet state. Maximum tensile strength, 84.2% of the dry state strength, was attained when crosslinking was performed in GP 0.5% solution. GP-crosslinking also endowed the CTS nanofibers with enhanced resistances to swelling and enzymatic degradation. GP-crosslinked CTS nanofibers were found to significantly promote the adhesion and growth of the L929 fibroblasts, with the most suitable sample was the one crosslinked in the GP 0.5% solution as well. Our results suggest that crosslinking with the 0.5% GP in PBS could yield CTS nanofibers with improved wet stability in nanofiber structure and optimized mechanical and biological performances.


Biomedical Materials | 2014

Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.

Huihua Yuan; Biyun Li; Kai Liang; Xiangxin Lou; Yanzhong Zhang

Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.


Journal of Materials Chemistry | 2012

Stable jet electrospinning for easy fabrication of aligned ultrafine fibers

Huihua Yuan; Shifang Zhao; Hongbin Tu; Biyun Li; Qin Li; Bei Feng; Hongju Peng; Yanzhong Zhang

Electrospinning has emerged as an attractive technique for the fabrication of ultrafine fibers in micro-/nano-scale fineness. However, it is still a huge technological challenge in achieving aligned fibers and arrays due to the inherent chaotic motion of an electrospinning jet. We report herein a novel spinning approach termed stable jet electrospinning to offer a facile solution to the noted issue. It involves judiciously using an ultrahigh molecular weight poly(ethylene oxide) to formulate the viscoelasticity of a spinning dope such that a very long and stable jet can be formed during electrospinning. This consequently allows for readily collecting and fabricating individual fibers, multi-filament yarns, well-aligned unidirectional fiber arrays in a large area, and ordered fiber patterns by controlling fiber placement. Our approach could thus open up the possibility of achieving continuous aligned ultrafine fibers and structures in a straightforward and scalable fashion, suitable for a variety of practical applications.


Biofabrication | 2015

Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth

Huihua Yuan; Qihui Zhou; Biyun Li; Min Bao; Xiangxin Lou; Yanzhong Zhang

Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications.


Journal of Materials Chemistry B | 2016

HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing

Min Bao; Xianliu Wang; Huihua Yuan; Xiangxin Lou; Qinghua Zhao; Yanzhong Zhang

In the clinical setting of bone fracture healing, hardware removal often causes localized microtrauma and residual screw holes may act as stress risers to place the patient at a risk of refracture. To address this noted issue, this study proposed to develop a biologically mimicking and mechanically self-actuated nanofibrous screw-like scaffold/implant for potential in situ bone regeneration. By incorporating nano-hydroxyapatite (HAp) into a shape memory copolymer poly(d,l-lactide-co-trimethylene carbonate) (PLMC) via co-electrospinning, composite nanofibers of HAp/PLMC with various HAp proportions (1, 2 and 3 wt%) were successfully generated. Morphological, thermal and mechanical properties as well as the shape memory effect of the resultant HAp/PLMC nanofibers were characterized using a variety of techniques. Thereafter, osteoblasts isolated from rat calvarial were cultured on the fibrous HAp/PLMC scaffold to assess its suitability for bone regeneration in vitro. We found that agglomerates gradually appeared on the fiber surface with increasing HAp loading fraction. The switching temperature for actuating shape recovery Ts (i.e., glass transition temperature Tg) of the fibrous HAp/PLMC was readily modulated to fall between 43.5 and 51.3 °C by varying the HAp loadings. Excellent shape memory properties were achieved for the HAp/PLMC composite nanofibers with a shape recovery ratio of Rr > 99% and shape fixity ratio of Rf > 99%, and the shape recovery force of the HAp/PLMC nanofibers was also strengthened compared to that of the HAp-free PLMC nanofibers. Moreover, we demonstrated that the engineered screw-like HAp/PLMC scaffold/implant (ϕ = 5 mm) was able to return from a slender bar to its original stumpy shape in a time frame of merely 8 s at 48 °C. Biological assay results corroborated that the incorporation of HAp to PLMC nanofibers significantly enhanced the alkaline phosphatase secretion as well as mineral deposition in bone formation. These attractive results warrant further investigation in vivo on the feasibility of applying the biomimicking nanofibrous HAp/PLMC scaffold with shape memory effect for bone screw hole healing.


Nanoscale | 2016

Highly aligned core–shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration

Huihua Yuan; Jinbao Qin; Jing Xie; Biyun Li; Zhepao Yu; Zhiyou Peng; Bingcheng Yi; Xiangxin Lou; Xinwu Lu; Yanzhong Zhang

This study was designed to assess the efficacy of hyaluronan (HA) functionalized well-aligned nanofibers of poly-l-lactic acid (PLLA) in modulating the phenotypic expression of vascular smooth muscle cells (vSMCs) for blood vessel regeneration. Highly aligned HA/PLLA nanofibers in core-shell structure were prepared using a novel stable jet electrospinning approach. Formation of a thin HA-coating layer atop each PLLA nanofiber surface endowed the uni-directionally oriented fibrous mats with increased anisotropic wettability and mechanical compliance. The HA/PLLA nanofibers significantly promoted vSMC to elongation, orientation, and proliferation, and also up-regulated the expression of contractile genes/proteins (e.g., α-SMA, SM-MHC) as well as the synthesis of elastin. Six weeks of in vivo scaffold replacement of rabbit carotid arteries showed that vascular conduits made of circumferentially aligned HA/PLLA nanofibers could maintain patency and promoted oriented vSMC regeneration, lumen endothelialization, and capillary formation. This study demonstrated the synergistic effects of nanotopographical and biochemical cues in one biomimetic scaffold design for efficacious vascular regeneration.

Collaboration


Dive into the Huihua Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qihui Zhou

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge