Huijiang Gao
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huijiang Gao.
Molecular Biology Reports | 2013
Zhengrong Yuan; Junya Li; Jiao Li; Xue Gao; Huijiang Gao; Shangzhong Xu
This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon’s region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.
Molecular Biology Reports | 2012
Zhengrong Yuan; Guiyan Chu; Yang Dan; Jiao Li; Lupei Zhang; Xue Gao; Huijiang Gao; Junya Li; Shangzhong Xu; Zhihua Liu
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine breast cancer 1, early onset gene (BRCA1) was taken as a candidate gene for mastitis resistance. The main object of this study was to investigate whether the BRCA1 gene was associated with mastitis in cattle. Through DNA sequencing, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Created Restriction Site PCR (CRS-PCR) methods, three SNPs (G22231T, T25025A, and C28300A) were detected and twenty-four combinations of these SNPs were observed. The single SNP and their genetic effects on somatic cell score (SCS) were evaluated and a significant association with SCS was found in C28300A. The mean of genotype EE was significantly lower than those of genotypes EF and FF. The results of combined genotypes analysis of three SNPs showed that BBDDFF genotype with the highest SCS were easily for the mastitis susceptibility, whereas AACCEE genotype with the lowest SCS were favorable for the mastitis resistance. The information provided in the present study will be very useful for improving mastitis resistance in dairy cattle by marker-assisted selection.
Animal Genetics | 2015
Yang Wu; Huizhong Fan; Shengyun Jing; Jiangwei Xia; Yan Chen; Lupei Zhang; Xue Gao; Junya Li; Huijiang Gao; Hongyan Ren
Copy number variations (CNVs) have recently been identified as promising sources of genetic variation, complementary to single nucleotide polymorphisms (SNPs). As a result, detection of CNVs has attracted a great deal of attention. In this study, we performed genome-wide CNV detection using Illumina Bovine HD BeadChip (770k) data on 792 Simmental cattle. A total of 263 CNV regions (CNVRs) were identified, which included 137 losses, 102 gains and 24 regions classified as both loss and gain, covering 35.48 Mb (1.41%) of the bovine genome. The length of these CNVRs ranged from 10.18 kb to 1.76 Mb, with an average length of 134.78 kb and a median length of 61.95 kb. In 136 of these regions, a total of 313 genes were identified related to biological functions such as transmembrane activity and olfactory transduction activity. To validate the results, we performed quantitative PCR to detect nine randomly selected CNVRs and successfully confirmed seven (77.6%) of them. Our results present a map of cattle CNVs derived from high-density SNP data, which expands the current CNV map of the cattle genome and provides useful information for investigation of genomic structural variation in cattle.
PLOS ONE | 2014
Yang Wu; Huizhong Fan; Yanhui Wang; Lupei Zhang; Xue Gao; Yan Chen; Junya Li; Hongyan Ren; Huijiang Gao
Recent advances in high-throughput genotyping technologies have provided the opportunity to map genes using associations between complex traits and markers. Genome-wide association studies (GWAS) based on either a single marker or haplotype have identified genetic variants and underlying genetic mechanisms of quantitative traits. Prompted by the achievements of studies examining economic traits in cattle and to verify the consistency of these two methods using real data, the current study was conducted to construct the haplotype structure in the bovine genome and to detect relevant genes genuinely affecting a carcass trait and a meat quality trait. Using the Illumina BovineHD BeadChip, 942 young bulls with genotyping data were introduced as a reference population to identify the genes in the beef cattle genome significantly associated with foreshank weight and triglyceride levels. In total, 92,553 haplotype blocks were detected in the genome. The regions of high linkage disequilibrium extended up to approximately 200 kb, and the size of haplotype blocks ranged from 22 bp to 199,266 bp. Additionally, the individual SNP analysis and the haplotype-based analysis detected similar regions and common SNPs for these two representative traits. A total of 12 and 7 SNPs in the bovine genome were significantly associated with foreshank weight and triglyceride levels, respectively. By comparison, 4 and 5 haplotype blocks containing the majority of significant SNPs were strongly associated with foreshank weight and triglyceride levels, respectively. In addition, 36 SNPs with high linkage disequilibrium were detected in the GNAQ gene, a potential hotspot that may play a crucial role for regulating carcass trait components.
Scientific Reports | 2016
Huizhong Fan; Yang Wu; Xiaojing Zhou; Jiangwei Xia; Wengang Zhang; Yuxin Song; Fei Liu; Yan Chen; Lupei Zhang; Xue Gao; Huijiang Gao; Junya Li
Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA)ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods.
Scientific Reports | 2017
Long Guan; Xin Hu; Li Liu; Yishen Xing; Zhengkui Zhou; Xingwei Liang; Qiyuan Yang; Shengyun Jin; Jinshan Bao; Huijiang Gao; Min Du; Junya Li; Lupei Zhang
Intramuscular fat deposition or marbling is essential for high quality beef. The molecular mechanism of adipogenesis in skeletal muscle remains largely unknown. In this study, we isolated Platelet-derived growth factor receptor α (PDGFRα) positive progenitor cells from fetal bovine skeletal muscle and induced into adipocytes. Using miRNAome sequencing, we revealed that bta-miR-23a was an adipogenic miRNA mediating bovine adipogenesis in skeletal muscle. The expression of bta-miR-23a was down-regulated during differentiation of PDGFRα+ progenitor cells. Forced expression of bta-miR-23a mimics reduced lipid accumulation and inhibited the key adipogenic transcription factor peroxisome proliferative activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα). Whereas down-regulation of bta-miR-23a by its inhibitors increased lipid accumulation and expression of C/EBPα, PPARγ and fatty acid-binding protein 4 (FABP4). Target prediction analysis revealed that ZNF423 was a potential target of bta-miR-23a. Dual-luciferase reporter assay revealed that bta-miR-23a directly targeted the 3′-UTR of ZNF423. Together, our data showed that bta-miR-23a orchestrates early intramuscular adipogeneic commitment as an anti-adipogenic regulator which acts by targeting ZNF423.
Asian-australasian Journal of Animal Sciences | 2013
M. Zhu; Bo Zhu; Yanhui Wang; Yang Wu; Lingyang Xu; L. P. Guo; Z. R. Yuan; L. P. Zhang; Xue Gao; Huijiang Gao; S. Z. Xu; Junya Li
Linkage disequilibrium (LD) plays an important role in genomic selection and mapping quantitative trait loci (QTL). In this study, the pattern of LD and effective population size (Ne) were investigated in Chinese beef Simmental cattle. A total of 640 bulls were genotyped with IlluminaBovinSNP50BeadChip and IlluminaBovinHDBeadChip. We estimated LD for each autosomal chromosome at the distance between two random SNPs of <0 to 25 kb, 25 to 50 kb, 50 to 100 kb, 100 to 500 kb, 0.5 to 1 Mb, 1 to 5 Mb and 5 to 10 Mb. The mean values of r2 were 0.30, 0.16 and 0.08, when the separation between SNPs ranged from 0 to 25 kb to 50 to 100 kb and then to 0.5 to 1 Mb, respectively. The LD estimates decreased as the distance increased in SNP pairs, and increased with the increase of minor allelic frequency (MAF) and with the decrease of sample sizes. Estimates of effective population size for Chinese beef Simmental cattle decreased in the past generations and Ne was 73 at five generations ago.
Scientific Reports | 2017
Jiangwei Xia; Huizhong Fan; Tianpeng Chang; Lingyang Xu; Wengang Zhang; Yuxin Song; Bo Zhu; Lupei Zhang; Xue Gao; Yan Chen; Junya Li; Huijiang Gao
Single-marker genome-wide association study (GWAS) is a convenient strategy of genetic analysis that has been successful in detecting the association of a number of single-nucleotide polymorphisms (SNPs) with quantitative traits. However, analysis of individual SNPs can only account for a small proportion of genetic variation and offers only limited knowledge of complex traits. This inadequacy may be overcome by employing a gene-based GWAS analytic approach, which can be considered complementary to the single-SNP association analysis. Here we performed an initial single-SNP GWAS for bone weight (BW) and meat pH value with a total of 770,000 SNPs in 1141 Simmental cattle. Additionally, 21836 cattle genes collected from the Ensembl Genes 83 database were analyzed to find supplementary evidence to support the importance of gene-based association study. Results of the single SNP-based association study showed that there were 11 SNPs significantly associated with bone weight (BW) and two SNPs associated with meat pH value. Interestingly, all of these SNPs were located in genes detected by the gene-based association study.
PLOS ONE | 2016
Bo Zhu; Miao Zhu; Jicai Jiang; Hong Niu; Yanhui Wang; Yang Wu; Lingyang Xu; Yan Chen; Lupei Zhang; Xue Gao; Huijiang Gao; Jianfeng Liu; Junya Li
Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-distribution depending on two fixed hyperparameters, degrees of freedom and scale parameters. In this study, we performed genomic prediction in Chinese Simmental beef cattle and treated degrees of freedom and scale parameters as unknown with inappropriate priors. Furthermore, we compared the modified methods (BayesFA, BayesFB and BayesFCπ) with their corresponding counterparts using simulation datasets. We found that the modified methods with distribution assumed to the two hyperparameters were beneficial for improving the predictive accuracy. Our results showed that the predictive accuracies of the modified methods were slightly higher than those of their counterparts especially for traits with low heritability and a small number of QTLs. Moreover, cross-validation analysis for three traits, namely carcass weight, live weight and tenderloin weight, in 1136 Simmental beef cattle suggested that predictive accuracy of BayesFCπ noticeably outperformed BayesCπ with the highest increase (3.8%) for live weight using the cohort masking cross-validation.
African Journal of Biotechnology | 2011
Guan-Yu Hou; Meng Huang; Xue Gao; Junya Li; Huijiang Gao; Hongyan Ren; Shangzhong Xu
Calpain 1 (CAPN1) and its activator HRSP12 are evaluated as candidate gene for quantitative trait loci (QTLs) affecting meat tenderness. In this study, SNPs were detected by sequencing in 323 cattle from 9 breeds. The association results showed that the A3553G and T824C loci individually related with marbling and tenderness, and CAPN1/HRSP12 double homozygote and heterozygote/homozygote pairs (AA/TT, AA/CC, AG/TT and GG/TT) had higher marbling score than the other groups. Our findings suggest that polymorphisms in CAPN1 and HRSP12 might be the important genetic factor influencing meat quality in carcass trait. Key words : Cattle, Calpain 1, HRSP12, association, carcass trait.