Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huijie Leng is active.

Publication


Featured researches published by Huijie Leng.


Journal of The Mechanical Behavior of Biomedical Materials | 2009

DIFFERENCES IN THE MECHANICAL BEHAVIOR OF CORTICAL BONE BETWEEN COMPRESSION AND TENSION WHEN SUBJECTED TO PROGRESSIVE LOADING

Jeffry S. Nyman; Huijie Leng; X. Neil Dong; Xiaodu Wang

The hierarchical arrangement of collagen and mineral into bone tissue presumably maximizes fracture resistance with respect to the predominant strain mode in bone. Thus, the ability of cortical bone to dissipate energy may differ between compression and tension for the same anatomical site. To test this notion, we subjected bone specimens from the anterior quadrant of human cadaveric tibiae to a progressive loading scheme in either uniaxial tension or uniaxial compression. One tension (dog-bone shape) and one compression specimen (cylindrical shape) were collected each from tibiae of nine middle aged male donors. At each cycle of loading-dwell-unloading-dwell-reloading, we calculated maximum stress, permanent strain, modulus, stress relaxation, time constant, and three pathways of energy dissipation for both loading modes. In doing so, we found that bone dissipated greater energy through the mechanisms of permanent and viscoelastic deformation in compression than in tension. On the other hand, however, bone dissipated greater energy through the release of surface energy in tension than in compression. Moreover, differences in the plastic and viscoelastic properties after yielding were not reflected in the evolution of modulus loss (an indicator of damage accumulation), which was similar for both loading modes. A possible explanation is that differences in damage morphology between the two loading modes may favor the plastic and viscoelastic energy dissipation in compression, but facilitate the surface energy release in tension. Such detailed information about failure mechanisms of bone at the tissue-level would help explain the underlying causes of bone fractures.


Journal of Biomechanics | 2009

Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups

Huijie Leng; X. Neil Dong; Xiaodu Wang

In this study, a progressive loading regimen (load-dwell-unloading-dwell-reloading) was applied on bone samples to examine the compressive post-yield response of bone at increasing strain levels. Cortical bone specimens from human tibiae of two age groups (middle-aged group: 53+/-2 years, 4 females and 4 males, elderly group: 83+/-6 years, 4 females and 4 males) were loaded in compression using the progressive loading scheme. Modulus degradation, plastic deformation, viscous response, and energy dissipation of bone during post-yield deformation were assessed. Although initial modulus was not significantly different between the two age groups, the degradation of modulus with the applied strain in the elderly group was faster than in the middle-aged group. The modulus loss (or microdamage accumulation) of bone occurred prior to plastic deformation. Plastic strain had a similar linear relationship with the applied strain for both middle-aged and the elderly group although middle-aged bone yielded at a greater strain. The viscoelastic time constant changed similarly with increasing strain for the two groups, whereas a higher magnitude of stress relaxation was observed in the middle-aged group. Energy dissipation was investigated through three pathways: elastic release strain energy, hysteresis energy, and plastic strain energy. The middle-aged group had significantly greater capacity of energy dissipation than the elderly group in all three pathways. The information obtained may provide important insights in age-related effects on bone fragility.


Spine | 2014

in Vivo Study of a Self-stabilizing Artificial Vertebral Body Fabricated by Electron Beam Melting

Jun Yang; Hong Cai; Jia Lv; Ke Zhang; Huijie Leng; Chuiguo Sun; Zhiguo Wang; Zhongjun Liu

Study Design. In vivo assessment of a novel artificial vertebral body fabricated by electron beam melting (EBM) for cervical vertebral body replacement in a sheep model. Objective. To investigate the feasibility of a novel artificial vertebral body: a “self-stabilizing artificial vertebral body” (SSAVB) fabricated by EBM in a sheep model. Summary of Background Data. Artificial vertebral body is widely used for vertebral body replacement and spinal fusion, but research on an artificial vertebral body fabricated by EBM has not been reported. Methods. An SSAVB made of porous Ti6Al4V was implanted into a sheep cervical spine to replace the C4 vertebral body for 6 and 12 weeks. Bone ingrowth and implant stability were radiologically evaluated, and histological and biomechanical tests were performed. Results. No screw loosening, implant dislocation, or bone fractures occurred during the experimental period. A significant difference (P = 0.001) in bone ingrowth between the 6- and 12-week groups was noted. Comparison of the range of motion of C3–C5 segments between the in vivo group and the control groups (intact C2–C6 segment and fresh sheep cervical spines from C2 to C6 segments that underwent C4 subtotal corpectomy with the posterior vertebral wall retention by SSAVB implantation) suggests that the implant can stably replace this area of the cervical spine. Conclusion. The open porous structure of Ti6Al4V fabricated by EBM facilitated bone ingrowth and the SSAVB can maintain cervical spine stability of the sheep. A porous metal implant can be used for load-bearing applications in a sheep model. It is hoped that these results will stimulate further study in human. Level of Evidence: 4


ACS Applied Materials & Interfaces | 2016

Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface

Peng Xiu; Zhaojun Jia; Jia Lv; Chuan Yin; Yan Cheng; Ke Zhang; Huijie Leng; Yufeng Zheng; Hong Cai; Zhongjun Liu

3D printed porous titanium (Ti) holds enormous potential for load-bearing orthopedic applications. Although the 3D printing technique has good control over the macro-sturctures of porous Ti, the surface properties that affect tissue response are beyond its control, adding the need for tailored surface treatment to improve its osseointegration capacity. Here, the one step microarc oxidation (MAO) process was applied to a 3D printed porous Ti6Al4V (Ti64) scaffold to endow the scaffold with a homogeneous layer of microporous TiO2 and significant amounts of amorphous calcium-phosphate. Following the treatment, the porous Ti64 scaffolds exhibited a drastically improved apatite forming ability, cyto-compatibility, and alkaline phosphatase activity. In vivo test in a rabbit model showed that the bone in-growth at the untreated scaffold was in a pattern of distance osteogenesis by which bone formed only at the periphery of the scaffold. In contrast, the bone in-growth at the MAO-treated scaffold exhibited a pattern of contact osteogenesis by which bone formed in situ on the entire surface of the scaffold. This pattern of bone in-growth significantly increased bone formation both in and around the scaffold possibly through enhancement of bone formation and disruption of bone remodeling. Moreover, the implant surface of the MAO-treated scaffold interlocked with the bone tissues through the fabricated microporous topographies to generate a stronger bone/implant interface. The increased osteoinetegration strength was further proven by a push out test. MAO exhibits a high efficiency in the enhancement of osteointegration of porous Ti64 via optimizing the patterns of bone in-growth and bone/implant interlocking. Therefore, post-treatment of 3D printed porous Ti64 with MAO technology might open up several possibilities for the development of bioactive customized implants in orthopedic applications.


Journal of Orthopaedic Research | 2014

The role of water and mineral-collagen interfacial bonding on microdamage progression in bone

Qing Luo; Huijie Leng; Xiaodu Wang; Yanheng Zhou; Qiguo Rong

Microdamage would be accumulated in bone due to high‐intensity training or even normal daily activity, which may consequently cause fragility fracture or stress fracture. On the other hand, microdamage formation serves as a toughening mechanism in bone. However, the mechanisms that control microdamage initiation and accumulation in bone are still poorly understood. Our previous finite element model indicated that different interfacial properties between mineral and collagen in bone may lead to distinct patterns of microdamage accumulation. Therefore, the current study was designed to examine such prediction and to investigate the role of water and mineral–collagen interactions on microdamage accumulation in bone. To address these issues, 48 mice femurs were divided randomly into four groups. These groups were dehydrated or treated with perfluorotripropylamine (PFTA) or NaF solution to change water distribution and mineral–collagen interfacial bonding in bone. After three‐point bending fatigue tests, the types of microdamage (i.e., linear microcracks or diffuse damage) formed in bone were compared between different groups. The results suggested that (1) bone tissues with strong mineral–collagen interfacial bonding facilitate the formation of linear microcraks, and (2) water has little contribution to the growth of microcracks.


Bone | 2013

Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone

Huijie Leng; Michael Reyes; Xuanliang N. Dong; Xiaodu Wang

The collagen phase plays an important role in mechanical behaviors of cortical bone. However, aging effects on the mechanical behavior of the collagen phase is still poorly understood. In this study, micro-tensile tests were performed on demineralized human cortical bone samples from young, middle-aged, and elderly donors and aging effects on the mechanical properties of the collagen phase in different orientations (i.e. longitudinal and transverse directions of bone) were examined. The results of this study indicated that the elastic modulus and ultimate strength of the demineralized bone specimens decreased with aging in both the longitudinal and transverse orientations. However, the failure strain exhibited no significant changes in both orientations regardless of aging. These results suggest that the stiffness and strength of the collagen phase in bone are deteriorated with aging in both longitudinal and transverse directions. However, the aging effect is not reflected in the failure strain of the collagen phase in both longitudinal and transverse orientations, implying that the maximum sustainable deformation of the collagen phase is independent of aging and orientation.


Journal of Biomechanics | 2010

Constitutive relationship of tissue behavior with damage accumulation of human cortical bone

Qing Luo; Huijie Leng; Rae L. Acuna; Xuanliang Neil Dong; Qiguo Rong; Xiaodu Wang

Microdamage accumulation has been identified as a major conduit for bone tissues to absorb fracture energy. Due to the poor understanding of its underlying mechanism, however, an adequate constitutive relationship between damage accumulation and the mechanical behavior of bone has not yet been established. In this study, the constitutive relationship between the damage accumulation induced by overload and the evolution of mechanical properties of bone with incremental deformation was established based on the experimental results obtained from a novel progressive loading protocol developed in our laboratory. First, a decayed exponential model was proposed to capture the damage accumulation (modulus loss) with increase in applied strain. Next, a power law function was proposed to represent the progression of plastic deformation with damage accumulation. Finally, a linear combination of the Kohlrausch-Williams-Watts (KWW) and the Debye functions was used to depict the viscoelastic behavior of bone associated with damage accumulation. The results of this study may help in developing a constitutive model for predicting the mechanical behavior of cortical bone tissues.


Journal of Orthopaedic Research | 2017

Comparison of the effects of once-weekly and once-daily rhPTH (1-34) injections on promoting fracture healing in rodents†

Wen Zhang; Junxiong Zhu; Teng Ma; Can Liu; Bao Hai; Guohong Du; Hong Wang; Nan Li; Huijie Leng; Yingsheng Xu

To compare the efficacy of once‐weekly and once‐daily subcutaneous injections of teriparatide (recombinant human parathyroid hormone 1–34) on fracture healing, 50 adult male Sprague–Dawley rats were subjected to a unilateral tibia fracture and received internal fixation with a Kirschner needle. Based on the injection dose and frequency, the rats were randomly divided into five groups (n = 10 each): subcutaneous injections of saline or 10 µg/kg/w, 20 µg/kg/w, 10 µg/kg/d, and 20 µg/kg/d teriparatide. Four weeks later, the rats were euthanatized, and the fractured tibiae were assessed using X‐rays, dual‐energy X‐ray absorptiometry, micro‐computed tomography, the three‐point bending biomechanics test, and histology. Compared to the saline control group, either daily or weekly subcutaneous injections of teriparatide significantly increased bone mass, improved the bone microarchitecture, and promoted fracture healing (p < 0.05). There were no significant differences in bone mineral density (BMD), bone microstructure or bone strength between the 20 µg/kg/w and 10 µg/kg/d groups (p > 0.05). Teriparatide 20 µg weekly injections promoted bone fracture healing to the same extent as teriparatide 10 µg daily injections, which can dramatically decrease the cumulative dosage of teriparatide injections.


Journal of Mechanics in Medicine and Biology | 2011

Finding of microdamage morphology differences in mouse femoral bones with distinct mineralization levels

X. Neil Dong; Huijie Leng; Qitao Ran; Xiaodu Wang

Microdamage progression in bone is dependent on the ultrastructure of the tissue. Thus, any pathological changes in bone ultrastructure may be reflected in the pattern and capacity of microdamage accumulation. A previous numerical study of microdamage progression in bone using a probabilistic failure analysis approach predicts that the microdamage morphology (either linear microcracks or diffuse damage) is very sensitive to the level of mineralization in bone, which is also implicated in some experimental observations. To examine the prediction, femurs from two strains of mice (C57BL/6J, N = 10 and C3H/HeJ, N = 11) that have distinct mineralization levels were fatigued under four-point bending to create damage in the bone tissues. After testing, the microdamage morphology of the bone samples was examined using bulk-staining technique with basic fuchsin. The results demonstrate that more linear microcracks are observed in femurs of C3H/HeJ (higher mineralization), whereas more diffuse-like damage is found in C57BL/6J femurs (less mineralized). Compared with linear microcracks, the formation of diffuse damage tends to dissipate more energy and help bone to avoid catastrophic failures. Therefore, results from this study may help explain why highly mineralized bone tends to be more brittle. Observations from this study are consistent with the numerical prediction from the previous study, suggesting that mineralization has a significant effect on the microdamage morphology of bone.


PLOS ONE | 2016

A Convenient In Vivo Model Using Small Interfering RNA Silencing to Rapidly Assess Skeletal Gene Function.

Wen Zhang; Can Liu; Bao Hai; Guohong Du; Hong Wang; Huijie Leng; Yingsheng Xu

It is difficult to study bone in vitro because it contains various cell types that engage in cross-talk. Bone biologically links various organs, and it has thus become increasingly evident that skeletal physiology must be studied in an integrative manner in an intact animal. We developed a model using local intraosseous small interfering RNA (siRNA) injection to rapidly assess the effects of a target gene on the local skeletal environment. In this model, 160-g male Sprague-Dawley rats were treated for 1–2 weeks. The left tibia received intraosseous injection of a parathyroid hormone 1 receptor (Pth1r) or insulin-like growth factor 1 receptor (Igf-1r) siRNA transfection complex loaded in poloxamer 407 hydrogel, and the right tibia received the same volume of control siRNA. All the tibias received an intraosseous injection of recombinant human parathyroid hormone (1–34) (rhPTH (1–34)) or insulin-like growth factor-1 (IGF-1). Calcein green and alizarin red were injected 6 and 2 days before euthanasia, respectively. IGF-1R and PTH1R expression levels were detected via RT-PCR assays and immunohistochemistry. Bone mineral density (BMD), microstructure, mineral apposition rates (MARs), and strength were determined by dual-energy X-ray absorptiometry, micro-CT, histology and biomechanical tests. The RT-PCR and immunohistochemistry results revealed that IGF-1R and PTH1R expression levels were dramatically diminished in the siRNA-treated left tibias compared to the right tibias (both p<0.05). Using poloxamer 407 hydrogel as a controlled-release system prolonged the silencing effect of a single dose of siRNA; the mRNA expression levels of IGF-1R were lower at two weeks than at one week (p<0.01). The BMD, bone microstructure parameters, MAR and bone strength were significantly decreased in the left tibias compared to the right tibias (all p<0.05). This simple and convenient local intraosseous siRNA injection model achieved gene silencing with very small quantities of siRNA over a short treatment period (≤7 days).

Collaboration


Dive into the Huijie Leng's collaboration.

Top Co-Authors

Avatar

Xiaodu Wang

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Neil Dong

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Xuanliang Dong

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge