Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huili Pang is active.

Publication


Featured researches published by Huili Pang.


Systematic and Applied Microbiology | 2011

Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis

Huili Pang; Guangyong Qin; Zhongfang Tan; Zongwei Li; Yanping Wang; Yimin Cai

One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality.


Journal of Microbiology | 2012

Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau

Huili Pang; Zhongfang Tan; Guangyong Qin; Yanping Wang; Zongwei Li; Qingsheng Jin; Yimin Cai

A total of 140 lactic acid bacteria (LAB) strains were isolated from corn, alfalfa, clover, sainfoin, and Indian goosegrass in the Tibetan Plateau. According to phenotypic and chemotaxonomic characteristics, 16S rDNA sequence, and recA gene PCR amplification, these LAB isolates were identified as belonging to five genera and nine species. Corn contained more LAB species than other forage crops. Leuconostoc pseudomesenteroides, Lactococcus lactis subsp. lactis, Lactobacillus brevis, and Weissella paramesenteroides were dominant members of the LAB population on alfalfa, clover, sainfoin, and Indian goosegrass, respectively. The comprehensive 16S rDNA and recA-based approach effectively described the LAB community structure of the relatively abundant LAB species distributed on different forage crops. This is the first report describing the diversity and natural populations of LAB associated with Tibetan forage crops, and most isolates grow well at or below 10°C. The results will be valuable for the future design of appropriate inoculants for silage fermentation in this very cold area.


International Journal of Systematic and Evolutionary Microbiology | 2012

Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus.

Yimin Cai; Huili Pang; Maki Kitahara; Moriya Ohkuma

Two strains of lactic acid bacteria, designated SU 18(T) and SU 83, were isolated from silage prepared with Sudan grass [Sorghum sudanense (Piper) Stapf.]. The isolates were Gram-stain-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. The isolates exhibited ≥93.5 % DNA-DNA relatedness to each other and shared the same phenotypic characteristics, which indicated that they belonged to a single species. The DNA G+C content was 58.5-59.2 mol%. On the basis of 16S rRNA gene sequence analysis, the isolates were placed in the genus Lactobacillus. Their closest phylogenetic neighbours were Lactobacillus manihotivorans JCM 12514(T) and Lactobacillus camelliae JCM 13995(T) (95.9 and 96.8 % 16S rRNA gene sequence similarity, respectively, with strain SU 18(T)). Ribotyping revealed that strain SU 18(T) was well separated from L. manihotivorans JCM 12514(T) and L. camelliae JCM 13995(T). Strain SU 18(T) exhibited ≤23.7 % DNA-DNA relatedness with its closest phylogenetic neighbours. The isolates represent a novel species in the genus Lactobacillus, for which the name Lactobacillus nasuensis sp. nov. is proposed. The type strain is SU 18(T) ( = JCM 17158(T)  = CGMCC 1.10801(T)). The description of the genus Lactobacillus is also amended.


Animal Science Journal | 2011

Identification of lactic acid bacteria isolated from corn stovers

Huili Pang; Meng Zhang; Guangyong Qin; Zhongfang Tan; Zongwei Li; Yanping Wang; Yimin Cai

One hundred and twenty-six strains were isolated from corn stover in Henan Province, China, of which 105 isolates were considered to be lactic acid bacteria (LAB) according to Gram-positive, catalase-negative and mainly metabolic lactic acid product. Analysis of the 16S ribosomal DNA sequence of 21 representative strains was used to confirm the presence of the predominant groups and to determine the phylogenetic affiliation of isolates. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank type strains between 99.4% and 100%. The prevalent LAB, predominantly Lactobacillus (85.6%), consisted of L. plantarum (33.3%), L. pentosus (28.6%) and L. brevis (23.7%). Other LAB species as Leuconostoc lactis (4.8%), Weissella cibaria (4.8%) and Enterococcus mundtii (4.8%) also presented in corn stover. The present study is the first to fully document corn stover-associated LAB involved in the silage fermentation. The identification results revealed LAB composition inhabiting corn stover and enabling the future design of appropriate inoculants aimed at improving the fermentation quality of silage.


PLOS ONE | 2015

Characterization, identification and application of lactic Acid bacteria isolated from forage paddy rice silage.

Kuikui Ni; Yanping Wang; Dongxia Li; Yimin Cai; Huili Pang

There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage.


Animal Science Journal | 2010

16S ribosomal DNA analysis and characterization of lactic acid bacteria associated with traditional Tibetan Qula cheese made from yak milk

Zhongfang Tan; Huili Pang; Yuheng Duan; Guangyong Qin; Yimin Cai

Twenty strains of lactic acid bacteria were isolated from six traditional Tibetan Qula cheese made from yak which were collected from northwest China, including Tibet, Qinghai and Gansu province. These isolates were subjected to phenotypic and genetic analyses. All isolates were Gram-positive and catalase-negative cocci that produced gas from glucose and formed D(-) isomer of lactate. Most isolates were able to grow in de Man, Rogosa and Sharpe (MRS) broth at pH values 3.0-9.0 and in 6.5% NaCl (w/v). According to analytical profile index 50 carbohydrates (API 50 CH) fermentation patterns of amygdalin and arabinose, these isolates were divided into three groups (A to C). On the basis of the phylogenetic trees of 16S ribosomal DNA (rDNA) sequence, the strains in all groups were placed in the cluster making up the genus Leuconostoc, which showed that all strains should belong to Leuconostoc species. Strains in Group A and Group B exhibited similarity of 16S rDNA sequence of over 99% to Leuconostoc mesenteroides, indicating that they each comprised a single species. Strains in group C were assigned to the Leuconostoc pseudomesenteroides and their 16S rDNA sequence showed a similarity of over 99%. This study demonstrated that Leuconostoc was the dominant member among lactic acid bacteria in Qula cheese.


Asian-australasian Journal of Animal Sciences | 2015

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

Dongxia Li; Kuikui Ni; Huili Pang; Yanping Wang; Yimin Cai; Qingsheng Jin

A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.


Animal Science Journal | 2016

Characterization and application of lactic acid bacteria for tropical silage preparation.

Suradej Pholsen; Waroon Khota; Huili Pang; David Higgs; Yimin Cai

Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains.


International Journal of Systematic and Evolutionary Microbiology | 2012

Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius

Huili Pang; Maki Kitahara; Zhongfang Tan; Yanping Wang; Guangyong Qin; Moriya Ohkuma; Yimin Cai

Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.


Asian-australasian Journal of Animal Sciences | 2015

Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat.

Kuikui Ni; Yanping Wang; Yimin Cai; Huili Pang

Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly.

Collaboration


Dive into the Huili Pang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yimin Cai

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge