Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huili Xing is active.

Publication


Featured researches published by Huili Xing.


Applied Physics Letters | 2007

Carrier statistics and quantum capacitance of graphene sheets and ribbons

Tian Fang; Aniruddha Konar; Huili Xing; Debdeep Jena

In this work, fundamental results for carrier statistics in graphene two-dimensional sheets and nanoscale ribbons are derived. Though the behavior of intrinsic carrier densities in two-dimennsional graphene sheets is found to differ drastically from traditional semiconductors, very narrow (sub-10nm) ribbons are found to be similar to traditional narrow-gap semiconductors. The quantum capacitance, an important parameter in the electrostatic design of devices, is derived for both two-dimensional graphene sheets and nanoribbons.


Science | 2010

Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures

John D. Simon; Vladimir Protasenko; Chuanxin Lian; Huili Xing; Debdeep Jena

Activating Stubborn Dopants Many applications of semiconductor light-emitting diodes and lasers, such as reading optical disks, benefit from shorter wavelengths, but this requires materials with larger energy gaps between their valance and conduction bands. The electronic conductivity of these materials often has to be increased by doping with impurity atoms. However, in nitride materials, such as GaN and AlGaN, hole doping with acceptor atoms such as Mg is ineffective at room temperature. Simon et al. (p. 60) grew a gradient of AlGaN on the surface of GaN and found that the polarization of the layer could field-ionize the acceptor dopants efficiently at room temperature. The heterostructure was used successfully in a light-emitting diode that emits in the ultraviolet. A compositional gradient of two semiconductors creates an electronic polarization that ionizes and activates dopant atoms. Impurity-based p-type doping in wide–band-gap semiconductors is inefficient at room temperature for applications such as lasers because the positive-charge carriers (holes) have a large thermal activation energy. We demonstrate high-efficiency p-type doping by ionizing acceptor dopants using the built-in electronic polarization in bulk uniaxial semiconductor crystals. Because the mobile hole gases are field-ionized, they are robust to thermal freezeout effects and lead to major improvements in p-type electrical conductivity. The new doping technique results in improved optical emission efficiency in prototype ultraviolet light-emitting–diode structures. Polarization-induced doping provides an attractive solution to both p- and n-type doping problems in wide–band-gap semiconductors and offers an unconventional path for the development of solid-state deep-ultraviolet optoelectronic devices and wide–band-gap bipolar electronic devices of the future.


Journal of Applied Physics | 2000

Heavy doping effects in Mg-doped GaN

P. Kozodoy; Huili Xing; Steven P. DenBaars; Umesh K. Mishra; A. Saxler; R. Perrin; S. Elhamri; W. C. Mitchel

The electrical properties of p-type Mg-doped GaN are investigated through variable-temperature Hall effect measurements. Samples with a range of Mg-doping concentrations were prepared by metalorganic chemical vapor phase deposition. A number of phenomena are observed as the dopant density is increased to the high values typically used in device applications: the effective acceptor energy depth decreases from 190 to 112 meV, impurity conduction at low temperature becomes more prominent, the compensation ratio increases, and the valence band mobility drops sharply. The measured doping efficiency drops in samples with Mg concentration above 2×1020 cm−3.


IEEE Electron Device Letters | 2012

InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and

Yuanzheng Yue; Zongyang Hu; Jia Guo; Berardi Sensale-Rodriguez; Guowang Li; Ronghua Wang; Faiza Faria; Tian Fang; Bo Song; Xiang Gao; Shiping Guo; Thomas H. Kosel; Gregory L. Snider; Patrick Fay; Debdeep Jena; Huili Xing

We report 30-nm-gate-length InAlN/AlN/GaN/SiC high-electron-mobility transistors (HEMTs) with a record current gain cutoff frequency (fT) of 370 GHz. The HEMT without back barrier exhibits an extrinsic transconductance (gm.ext) of 650 mS/mm and an on/off current ratio of 106 owing to the incorporation of dielectric-free passivation and regrown ohmic contacts with a contact resistance of 0.16 Ω·mm. Delay analysis suggests that the high fT is a result of low gate-drain parasitics associated with the rectangular gate. Although it appears possible to reach 500-GHz fT by further reducing the gate length, it is imperative to investigate alternative structures that offer higher mobility/velocity while keeping the best possible electrostatic control in ultrascaled geometry.


IEEE Electron Device Letters | 2008

f_{T}

Qin Zhang; Tian Fang; Huili Xing; Alan Seabaugh; Debdeep Jena

A graphene nanoribbon (GNR) tunnel field-effect transistor (TFET) is proposed and modeled analytically. Ribbon widths between 3 and 10 nm are considered to effect energy bandgaps in the range of 0.46 to 0.14 eV. It is shown that a 5-nm ribbon width TFET can switch from on to off with only 0.1-V gate swing. The transistor achieves 800 muA/mum on -state current and 26 pA/mum off-state current, with an effective subthreshold swing of 0.19 mV/dec. Compared to a projected 2009 n MOSFET, the GNR TFET can provide 5times higher speed, 20times lower dynamic power, and 280 000times lower off-state power dissipation. The high performance of GNR TFETs results from their narrow bandgaps and their 1-D nature.


Applied Physics Letters | 2012

of 370 GHz

Wan Sik Hwang; Maja Remskar; Rusen Yan; Vladimir Protasenko; Kristof Tahy; Soo Doo Chae; Pei Zhao; Aniruddha Konar; Huili Xing; Alan Seabaugh; Debdeep Jena

We report the realization of field-effect transistors (FETs) made with chemically synthesized multilayer crystal semiconductor WS2. The Schottky-barrier FETs demonstrate ambipolar behavior and a high (∼105×) on/off current ratio at room temperature with current saturation. The behavior is attributed to the presence of an energy bandgap in the ultrathin layered semiconductor crystal material. The FETs also show clear photo response to visible light. The promising electronic and optical characteristics of the devices combined with the chemical synthesis, and flexibility of layered semiconductor crystals such as WS2 make them attractive for future electronic and optical devices.


Physical Review B | 2008

Graphene Nanoribbon Tunnel Transistors

Tian Fang; Aniruddha Konar; Huili Xing; Debdeep Jena

The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbons and from acoustic phonons are as important as line-edge roughness scattering. The relative importance of these scattering mechanisms varies with the temperature, Fermi-level location, and the width of the ribbons. Based on the analysis, strategies for improvement of low-field mobility are described.


Applied Physics Letters | 2011

Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior

Berardi Sensale-Rodriguez; Tian Fang; Rusen Yan; Michelle Kelly; Debdeep Jena; Lei Liu; Huili Xing

The modulation depth of two-dimensional electron-gas (2DEG) based terahertz (THz) modulators using AlGaAs/GaAs hetero-structures with metal gates is inherently limited to <30%. The metal gate not only attenuates the THz signal but also severely degrades modulation depth. Metal losses can be significantly reduced employing an alternative material with tunable conductivity. Graphene presents a unique solution to this problem due to its symmetric band structure and extraordinarily high hole mobility. In this work, we show that it is possible to achieve a modulation depth of >90% while simultaneously minimizing signal attenuation to <5% by tuning the Fermi level at its Dirac point. VC 2011 American Institute of Physics. [doi:10.1063/1.3636435]


Applied Physics Letters | 1999

Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering

P. Kozodoy; Yulia Smorchkova; M. Hansen; Huili Xing; Steven P. DenBaars; Umesh K. Mishra; A. Saxler; R. Perrin; W. C. Mitchel

The hole-transport properties of Mg-doped AlGaN/GaN superlattices are carefully examined. Variable-temperature Hall-effect measurements indicate that the use of such superlattices enhances the average hole concentration at a temperature of 120 K by over five orders of magnitude compared to a bulk GaN film (the enhancement at room temperature is a factor of 9). An unusual modulation-doping scheme, which has been realized using molecular-beam epitaxy, has yielded high-hole-mobility superlattices and conclusively demonstrated the pivotal role of piezoelectric and spontaneous polarization in determining the band structure of the superlattices.


Applied Physics Letters | 2011

Unique prospects for graphene-based terahertz modulators

Satyaki Ganguly; Jai Verma; Guowang Li; Tom Zimmermann; Huili Xing; Debdeep Jena

Unlike silicon and traditional III-V semiconductors, the III-nitrides exhibit high spontaneous and piezoelectric polarization charges at epitaxial polar heterojunctions. In the process of investigating scaling properties of gate-stacks consisting atomic-layer deposited Al2O3/III-Nitride heterojunctions, we find interface charges that appear closely linked to the polarization charges of the underlying nitride substrate. Through capacitance-voltage measurement on a series of samples of varying dielectric thicknesses, we find the presence and propose an origin of benign donor-type interface charges (Qit ∼6 × 1013 cm−2) at the AlN/Al2O3 junction. This interface charge is almost equal to the net polarization charge in AlN. The polarization-related dielectric/AlN interface charge and the role of oxygen in the dielectric as a possible modulation dopant potentially offer opportunities for various device applications.

Collaboration


Dive into the Huili Xing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Fay

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Seabaugh

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Guowang Li

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Tian Fang

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jai Verma

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Ronghua Wang

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Kristof Tahy

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge