Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huiling Wu is active.

Publication


Featured researches published by Huiling Wu.


Journal of Clinical Investigation | 2007

TLR4 activation mediates kidney ischemia/reperfusion injury

Huiling Wu; Gang Chen; Kate Wyburn; Jianlin Yin; Patrick Bertolino; Josette Eris; Stephen I. Alexander; Alexandra F. Sharland; Steven J. Chadban

Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.


Journal of The American Society of Nephrology | 2010

HMGB1 Contributes to Kidney Ischemia Reperfusion Injury

Huiling Wu; Jin Ma; Peng Wang; Theresa M. Corpuz; Usha Panchapakesan; Kate Wyburn; Steven J. Chadban

High-mobility group box 1 (HMGB1), a nuclear factor released extracellularly as an inflammatory cytokine, is an endogenous ligand for Toll-like receptor 4 (TLR4). TLR4 activation mediates kidney ischemia-reperfusion injury (IRI), but whether HMGB1 contributes to IRI is unknown. Here, treating wild-type mice with neutralizing anti-HMGB1 antibody protected them against kidney IRI, evidenced by lower serum creatinine and less tubular damage than untreated mice. Mice treated with anti-HMGB1 had significantly less tubulointerstitial infiltration by neutrophils (day 1) and macrophages (day 5) and markedly reduced apoptosis of tubular epithelial cells. Furthermore, anti-HMGB1 antibody-treated IRI kidneys had significantly lower levels of IL-6, TNFα, and monocyte chemoattractant protein 1 (MCP1). mRNA, which are downstream of HMGB1. Conversely, administration of rHMGB1 after reperfusion exacerbated kidney IRI in wild-type mice. TLR4 deficient (TLR4(-/-)) mice were protected against kidney IRI; administration of neither anti-HMGB1 antibody nor rHMGB1 affected this renoprotection. In conclusion, endogenous HMGB1 promotes kidney damage after IRI, possibly through the TLR4 pathway. Administration of a neutralizing antibody to HMGB1 either before or soon after ischemia-reperfusion affords significant protection, suggesting therapeutic potential for acute kidney injury.


Science Translational Medicine | 2014

Therapeutic Inflammatory Monocyte Modulation Using Immune-Modifying Microparticles

Daniel R. Getts; Rachael L. Terry; Meghann Teague Getts; Celine Deffrasnes; Marcus Müller; Thomas Myles Ashhurst; Belal Chami; Derrick P. McCarthy; Huiling Wu; Jin Ma; Aaron Martin; Lonnie D. Shae; Paul K. Witting; Geoffrey S. Kansas; Joachim E. Kühn; Wali Hafezi; Iain L. Campbell; D. J. Reilly; Jana M. Say; Louise J. Brown; Melanie Y. White; Stuart J. Cordwell; Steven J. Chadban; Edward B. Thorp; Shisan Bao; Stephen D. Miller; Nicholas J. C. King

Negatively charged immune-modifying microparticles bind to the scavenger receptor MARCO on inflammatory monocytes, resulting in their apoptosis and reduced inflammatory damage in a range of diseases. A New Frontier in Immune Modulation Inflammatory monocytes markedly potentiate the immune pathology observed in many diseases, yet no therapy exists that specifically inhibits these cells. The therapeutic accessibility of monocytes in the bloodstream and their inherent propensity to engulf particulate material suggest that highly negatively charged microparticles might provide a readily translatable solution to this problem. These microparticles, referred to as immune-modifying microparticles (IMPs), may be derived from numerous compounds, including the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA-IMP), already used in humans for inter alia dissolvable sutures. Getts et al. now show that upon infusion, IMPs bind to a receptor with a positive domain on inflammatory monocytes, resulting in monocyte sequestration in the spleen and apoptosis through a similar pathway observed for senescing leukocytes. This safe monocyte clearance pathway culminated in substantially reduced inflammatory tissue damage in mouse models of West Nile virus encephalitis, experimental autoimmune encephalomyelitis, peritonitis, colitis, and myocardial infarction. Together, the data suggest that IMPs could transform the treatment of acute inflammation. Indeed, phase 1/2 testing is planned to begin in 2014, with rapid translation supported by the availability of clinical-grade PLGA. Inflammatory monocyte-derived effector cells play an important role in the pathogenesis of numerous inflammatory diseases. However, no treatment option exists that is capable of modulating these cells specifically. We show that infused negatively charged, immune-modifying microparticles (IMPs), derived from polystyrene, microdiamonds, or biodegradable poly(lactic-co-glycolic) acid, were taken up by inflammatory monocytes, in an opsonin-independent fashion, via the macrophage receptor with collagenous structure (MARCO). Subsequently, these monocytes no longer trafficked to sites of inflammation; rather, IMP infusion caused their sequestration in the spleen through apoptotic cell clearance mechanisms and, ultimately, caspase-3–mediated apoptosis. Administration of IMPs in mouse models of myocardial infarction, experimental autoimmune encephalomyelitis, dextran sodium sulfate–induced colitis, thioglycollate-induced peritonitis, and lethal flavivirus encephalitis markedly reduced monocyte accumulation at inflammatory foci, reduced disease symptoms, and promoted tissue repair. Together, these data highlight the intricate interplay between scavenger receptors, the spleen, and inflammatory monocyte function and support the translation of IMPs for therapeutic use in diseases caused or potentiated by inflammatory monocytes.


Transplantation | 2005

The role of macrophages in allograft rejection.

Kate Wyburn; Matthew D. Jose; Huiling Wu; Robert C. Atkins; Steven J. Chadban

Macrophage accumulation has long been recognized as a feature of allograft rejection, yet the role of macrophages in rejection remains underappreciated. Macrophages contribute to both the innate and acquired arms of the alloimmune response and thus may be involved in all aspects of acute and chronic allograft rejection. Recent advances in macrophage biology have allowed a better understanding of the mechanisms of macrophage accumulation, their state of activation and the pleuripotent roles they play in allograft rejection. Therapeutic attention to macrophages, in addition to T lymphocytes, may lead to improved outcomes in organ transplantation.


Journal of The American Society of Nephrology | 2008

IL-18 Contributes to Renal Damage after Ischemia-Reperfusion

Huiling Wu; Melissa L. Craft; Peng Wang; Kate Wyburn; Gang Chen; Jin Ma; Brett D. Hambly; Steven J. Chadban

IL-18 is a proinflammatory cytokine produced by macrophages and other cell types present in the kidney during ischemia-reperfusion injury (IRI), but its role in this injury is unknown. Here, compared with wild-type mice, IL-18(-/-) mice subjected to kidney IRI demonstrated better kidney function, less tubular damage, reduced accumulation of neutrophils and macrophages, and decreased expression of proinflammatory molecules that are downstream of IL-18. For determination of the relative contributions of leukocytes and parenchymal cells to IL-18 production and subsequent kidney damage during IRI, bone marrow-chimeric mice were generated. Wild-type mice engrafted with IL-18(-/-) hemopoietic cells showed less kidney dysfunction and tubular damage than IL-18(-/-) mice engrafted with wild-type bone marrow. In vitro, macrophages produced IL-18 mRNA and protein in response to ischemia. These data suggest bone marrow-derived cells are the key contributors to IL-18-mediated effects of renal IRI. Finally, similar to IL-18(-/-) mice, pretreatment of wild-type mice with IL-18-binding protein was renoprotective in this model of IRI. In conclusion, IL-18, derived primarily from cells of bone marrow origin, contributes to the renal damage observed during IRI. IL-18-binding protein may have potential as a renoprotective therapy.


Journal of The American Society of Nephrology | 2006

Foxp3-Transduced Polyclonal Regulatory T Cells Protect against Chronic Renal Injury from Adriamycin

Yuan Min Wang; Geoff Yu Zhang; Yiping Wang; Min Hu; Huiling Wu; Debbie Watson; Shohei Hori; Ian E. Alexander; David C.H. Harris; Stephen I. Alexander

Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.


American Journal of Physiology-renal Physiology | 2013

The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules

Harshini Mudaliar; Carol A. Pollock; Murali Gangadharan Komala; Steven J. Chadban; Huiling Wu; Usha Panchapakesan

Inflammatory responses are central to the pathogenesis of diabetic nephropathy. Toll-like receptors (TLRs) are ligand-activated membrane-bound receptors which induce inflammatory responses predominantly through the activation of NF-κB. TLR2 and 4 are present in proximal tubular cells and are activated by endogenous ligands upregulated in diabetic nephropathy, including high-mobility group box-1 (HMGB1) and fibronectin. Human proximal tubules were exposed to 5 mM (control), 11.2 mM (approximating the clinical diagnostic threshold for diabetes mellitus), and 30 mM (high) glucose for 72 h or 7 days. Cells were harvested for protein, mRNA, and nuclear extract to assess for TLR2, 4, and inflammatory markers. Glucose (11.2 mM) maximally increased TLR2 and 4 expression, HMGB1 release, and NF-κB activation with increased expression of cytokines. However, only TLR2 expression and subsequent NF-κB binding were sustained at 7 days. Recombinant HMGB1 induced NF-κB activation, which was prevented by both TLR2 silencing [small interfering (si)RNA] and TLR4 inhibition. Peroxisome proliferator-activated receptor-γ (PPAR-γ) transcription was reduced by exposure to 11.2 mM glucose with an increase observed at 30 mM glucose at 24 h. This may reflect a compensatory increase in PPAR-γ induced by exposure to 30 mM glucose, limiting the inflammatory response. Therefore, short-term moderate increases in glucose in vitro increase HMGB1, which mediates NF-κB activation through both TLR2 and 4. Furthermore, in vivo, streptozotocin-induced diabetic mice exhibited an increase in tubular TLR2 and HMGB1 expression. These results collectively suggest that TLR2 is likely to be the predominant long-term mediator of NF-κB activation in transducing inflammation in diabetic nephropathy.


PLOS ONE | 2014

The role of TLR2 and 4-mediated inflammatory pathways in endothelial cells exposed to high glucose.

Harshini Mudaliar; Carol A. Pollock; Jin Ma; Huiling Wu; Steven J. Chadban; Usha Panchapakesan

Postprandial hyperglycemia induces inflammation and endothelial dysfunction resulting in vascular complications in patients with diabetes. Toll-like receptors (TLRs) are central to the regulation of inflammatory responses through activation of nuclear factor-kappa B (NF-ĸB). This study examined the role of TLR2 and 4 in regulating inflammation and endothelial dysfunction when exposed to fluctuating glucose concentrations. HMEC-1 cells (a human microvascular endothelial cell line) were exposed to control (5 mM), 30 mM (high), fluctuating (5/30 mM) and 11.2 mM glucose (approximate glycaemic criteria for the diagnosis of diabetes mellitus) for 72 h. Cells were assessed for TLR2, 4, high mobility group box -1 (HMGB1), NF-ĸB, monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Fluctuating glucose concentrations maximally upregulated TLR4 but not TLR2 expression with increased NF-ĸB activation, IL-8 and ICAM-1 expression. HMGB1 was increased in the supernatants of cells exposed to 30 mM and 11.2 mM glucose compared to control. The addition of recombinant HMGB1 induced NF-ĸB activation and synthesis of proinflammatory cytokines and chemokines, which were prevented by TLR2 or 4 signalling inhibition. An additive effect when both TLR2 and 4 signalling pathways were inhibited was observed. However, only inhibition of TLR4 signalling suppressed the synthesis of MCP-1, IL-8 and ICAM-1. In vivo, streptozotocin-induced diabetic mice exhibited an increase in glomerular ICAM-1 which was not evident in TLR2-/- or TLR4-/- diabetic mice. Collectively, our results suggest that targeting the signalling pathway of TLR2 and 4 may be of therapeutic benefit in attenuating vascular inflammation in diabetic microangiopathy.


PLOS ONE | 2014

TLR4 Activation Promotes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy

Jin Ma; Steven J. Chadban; Cathy Yunjia Zhao; Xiaochen Chen; Tony Kwan; Usha Panchapakesan; Carol A. Pollock; Huiling Wu

Toll like receptor (TLR) 4 has been reported to promote inflammation in diabetic nephropathy. However the role of TLR4 in the complicated pathophysiology of diabetic nephropathy is not understood. In this study, we report elevated expression of TLR4, its endogenous ligands and downstream cytokines, chemokines and fibrogenic genes in diabetic nephropathy in WT mice with streptozotocin (STZ) diabetes. Subsequently, we demonstrated that TLR4−/− mice were protected against the development of diabetic nephropathy, exhibiting less albuminuria, inflammation, glomerular hypertrophy and hypercellularity, podocyte and tubular injury as compared to diabetic wild-type controls. Marked reductions in interstitial collagen deposition, myofibroblast activation (α-SMA) and expression of fibrogenic genes (TGF-β and fibronectin) were also evident in TLR4 deficient mice. Consistent with our in vivo results, high glucose directly promoted TLR4 activation in podocytes and tubular epithelial cells in vitro, resulting in NF-κB activation and consequent inflammatory and fibrogenic responses. Our data indicate that TLR4 activation may promote inflammation, podocyte and tubular epithelial cell injury and interstitial fibrosis, suggesting TLR4 is a potential therapeutic target for diabetic nephropathy.


Journal of The American Society of Nephrology | 2007

Depletion of γδ T Cells Exacerbates Murine Adriamycin Nephropathy

Huiling Wu; Yuan Min Wang; Yiping Wang; Min Hu; Geoff Yu Zhang; John Knight; David C.H. Harris; Stephen I. Alexander

It has been reported that the presence of gammadelta T cells in kidney is associated with kidney damage in human IgA nephropathy and in rat models of chronic renal injury, including Adriamycin nephropathy (AN), but the functional role of gammadelta T cells in this setting is unknown. This study examined the functional role of gammadelta T cells in tissue injury in a murine model of AN. Murine AN was induced in BALB/c mice by a single injection of Adriamycin. gammadelta T cells as a proportion of CD3(+) T cells were significantly increased in AN kidneys (16.8 +/- 3.9%) but not in lymph nodes (1.3 +/- 0.8%; P < 0.001). The proportion of gammadelta T cells in AN kidney correlated positively with serum creatinine and glomerular sclerosis. The Vgammadelta T cell receptor (TCR) repertoire in kidney showed expansion of a subset of cells that expressed Vgamma6/Vdelta1 genes and that used canonical TCR Vgamma6/Vdelta1 sequences in the CDR3 region of the TCR. gammadelta T cells that were sorted from the kidneys expressed TGF-beta but not IL-4, IL-10, or IFN-gamma. gammadelta T cells also expressed the activating receptor NKG2D and the NKG2D adaptor molecule DAP12. RAE-1, a ligand of NKG2D, was upregulated in AN kidney. Depletion of gammadelta T cells using anti-TCR gammadelta antibody resulted in worsening of serum creatinine, glomerulosclerosis, and interstitial inflammation. These studies indicate the involvement of the gammadelta T cell in innate recognition and regulation of inflammation in AN.

Collaboration


Dive into the Huiling Wu's collaboration.

Top Co-Authors

Avatar

Steven J. Chadban

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen I. Alexander

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Kate Wyburn

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Jin Ma

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josette Eris

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Tony Kwan

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuan Min Wang

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Geoff Yu Zhang

Children's Hospital at Westmead

View shared research outputs
Researchain Logo
Decentralizing Knowledge