Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huining Kang is active.

Publication


Featured researches published by Huining Kang.


Blood | 2010

Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia

Richard C. Harvey; Charles G. Mullighan; I-Ming Chen; Walker Wharton; Fady M. Mikhail; Andrew J. Carroll; Huining Kang; Wei Liu; Kevin K. Dobbin; Malcolm A. Smith; William L. Carroll; Meenakshi Devidas; W. Paul Bowman; Bruce M. Camitta; Gregory H. Reaman; Stephen P. Hunger; James R. Downing; Cheryl L. Willman

Gene expression profiling of 207 uniformly treated children with high-risk B-progenitor acute lymphoblastic leukemia revealed 29 of 207 cases (14%) with markedly elevated expression of CRLF2 (cytokine receptor-like factor 2). Each of the 29 cases harbored a genomic rearrangement of CRLF2: 18 of 29 (62%) had a translocation of the immunoglobulin heavy chain gene IGH@ on 14q32 to CRLF2 in the pseudoautosomal region 1 of Xp22.3/Yp11.3, whereas 10 (34%) cases had a 320-kb interstitial deletion centromeric of CRLF2, resulting in a P2RY8-CRLF2 fusion. One case had both IGH@-CRLF2 and P2RY8-CRLF2, and another had a novel CRLF2 rearrangement. Only 2 of 29 cases were Down syndrome. CRLF2 rearrangements were significantly associated with activating mutations of JAK1 or JAK2, deletion or mutation of IKZF1, and Hispanic/Latino ethnicity (Fisher exact test, P < .001 for each). Within this cohort, patients with CRLF2 rearrangements had extremely poor treatment outcomes compared with those without CRLF2 rearrangements (35.3% vs 71.3% relapse-free survival at 4 years; P < .001). Together, these observations suggest that activation of CRLF2 expression, mutation of JAK kinases, and alterations of IKZF1 cooperate to promote B-cell leukemogenesis and identify these pathways as important therapeutic targets in this disease.


Blood | 2010

Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome

Richard C. Harvey; Charles G. Mullighan; Xuefei Wang; Kevin K. Dobbin; George S. Davidson; Edward J. Bedrick; I-Ming Chen; Susan R. Atlas; Huining Kang; Kerem Ar; Carla S. Wilson; Walker Wharton; Maurice H. Murphy; Meenakshi Devidas; Andrew J. Carroll; Michael J. Borowitz; W. Paul Bowman; James R. Downing; Mary V. Relling; Jun Yang; Deepa Bhojwani; William L. Carroll; Bruce M. Camitta; Gregory H. Reaman; Malcolm A. Smith; Stephen P. Hunger; Cheryl L. Willman

To resolve the genetic heterogeneity within pediatric high-risk B-precursor acute lymphoblastic leukemia (ALL), a clinically defined poor-risk group with few known recurring cytogenetic abnormalities, we performed gene expression profiling in a cohort of 207 uniformly treated children with high-risk ALL. Expression profiles were correlated with genome-wide DNA copy number abnormalities and clinical and outcome features. Unsupervised clustering of gene expression profiling data revealed 8 unique cluster groups within these high-risk ALL patients, 2 of which were associated with known chromosomal translocations (t(1;19)(TCF3-PBX1) or MLL), and 6 of which lacked any previously known cytogenetic lesion. One unique cluster was characterized by high expression of distinct outlier genes AGAP1, CCNJ, CHST2/7, CLEC12A/B, and PTPRM; ERG DNA deletions; and 4-year relapse-free survival of 94.7% ± 5.1%, compared with 63.5% ± 3.7% for the cohort (P = .01). A second cluster, characterized by high expression of BMPR1B, CRLF2, GPR110, and MUC4; frequent deletion of EBF1, IKZF1, RAG1-2, and IL3RA-CSF2RA; JAK mutations and CRLF2 rearrangements (P < .0001); and Hispanic ethnicity (P < .001) had a very poor 4-year relapse-free survival (21.0% ± 9.5%; P < .001). These studies reveal striking clinical and genetic heterogeneity in high-risk ALL and point to novel genes that may serve as new targets for diagnosis, risk classification, and therapy.


Blood | 2012

Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study

I-Ming Chen; Richard C. Harvey; Charles G. Mullighan; Julie M. Gastier-Foster; Walker Wharton; Huining Kang; Michael J. Borowitz; Bruce M. Camitta; Andrew J. Carroll; Meenakshi Devidas; Pullen Dj; Debbie Payne-Turner; Sarah K. Tasian; Shalini C. Reshmi; Catherine E. Cottrell; Gregory H. Reaman; Bowman Wp; William L. Carroll; Mignon L. Loh; Naomi J. Winick; Stephen P. Hunger; Cheryl L. Willman

As controversy exists regarding the prognostic significance of genomic rearrangements of CRLF2 in pediatric B-precursor acute lymphoblastic leukemia (ALL) classified as standard/intermediate-risk (SR) or high-risk (HR), we assessed the prognostic significance of CRLF2 mRNA expression, CRLF2 genomic lesions (IGH@-CRLF2, P2RY8-CRLF2, CRLF2 F232C), deletion/mutation in genes frequently associated with high CRLF2 expression (IKZF1, JAK, IL7R), and minimal residual disease (MRD) in 1061 pediatric ALL patients (499 HR and 562 SR) on COG Trials P9905/P9906. Whereas very high CRLF2 expression was found in 17.5% of cases, only 51.4% of high CRLF2 expressors had CRLF2 genomic lesions. The mechanism underlying elevated CRLF2 expression in cases lacking known genomic lesions remains to be determined. All CRLF2 genomic lesions and virtually all JAK mutations were found in high CRLF2 expressors, whereas IKZF1 deletions/mutations were distributed across the full cohort. In multivariate analyses, NCI risk group, MRD, high CRLF2 expression, and IKZF1 lesions were associated with relapse-free survival. Within HR ALL, only MRD and CRLF2 expression predicted a poorer relapse-free survival; no difference was seen between cases with or without CRLF2 genomic lesions. Thus, high CRLF2 expression is associated with a very poor outcome in high-risk, but not standard-risk, ALL. This study is registered at www.clinicaltrials.gov as NCT00005596 and NCT00005603.


Blood | 2010

GENE EXPRESSION CLASSIFIERS FOR RELAPSE FREE SURVIVAL AND MINIMAL RESIDUAL DISEASE IMPROVE RISK CLASSIFICATION AND OUTCOME PREDICTION IN PEDIATRIC B-PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA

Cheryl L. Willman; Richard C. Harvey; Huining Kang; Edward J. Bedrick; Xuefei Wang; Susan R. Atlas; I-Ming Chen

To determine whether gene expression profiling could improve outcome prediction in children with acute lymphoblastic leukemia (ALL) at high risk for relapse, we profiled pretreatment leukemic cells in 207 uniformly treated children with high-risk B-precursor ALL. A 38-gene expression classifier predictive of relapse-free survival (RFS) could distinguish 2 groups with differing relapse risks: low (4-year RFS, 81%, n = 109) versus high (4-year RFS, 50%, n = 98; P < .001). In multivariate analysis, the gene expression classifier (P = .001) and flow cytometric measures of minimal residual disease (MRD; P = .001) each provided independent prognostic information. Together, they could be used to classify children with high-risk ALL into low- (87% RFS), intermediate- (62% RFS), or high- (29% RFS) risk groups (P < .001). A 21-gene expression classifier predictive of end-induction MRD effectively substituted for flow MRD, yielding a combined classifier that could distinguish these 3 risk groups at diagnosis (P < .001). These classifiers were further validated on an independent high-risk ALL cohort (P = .006) and retainedindependent prognostic significance (P < .001) in the presence of other recently described poor prognostic factors (IKAROS/IKZF1 deletions, JAK mutations, and kinase expression signatures). Thus, gene expression classifiers improve ALL risk classification and allow prospective identification of children who respond or fail current treatment regimens. These trials were registered at http://clinicaltrials.gov under NCT00005603.


Blood | 2013

Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project

Mignon L. Loh; Jinghui Zhang; Richard C. Harvey; Kathryn G. Roberts; Debbie Payne-Turner; Huining Kang; Gang Wu; Xiang Chen; Jared Becksfort; Michael Edmonson; Kenneth H. Buetow; William L. Carroll; I. Ming Chen; Brent L. Wood; Michael J. Borowitz; Meenakshi Devidas; Daniela S. Gerhard; Paul Bowman; Eric Larsen; Naomi J. Winick; Elizabeth A. Raetz; Malcolm A. Smith; James R. Downing; Cheryl L. Willman; Charles G. Mullighan; Stephen P. Hunger

One recently identified subtype of pediatric B-precursor acute lymphoblastic leukemia (ALL) has been termed BCR-ABL1-like or Ph-like because of similarity of the gene expression profile to BCR-ABL1 positive ALL suggesting the presence of lesions activating tyrosine kinases, frequent alteration of IKZF1, and poor outcome. Prior studies demonstrated that approximately half of these patients had genomic lesions leading to CRLF2 overexpression, with half of such cases harboring somatic mutations in the Janus kinases JAK1 and JAK2. To determine whether mutations in other tyrosine kinases might also occur in ALL, we sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with either a Ph-like gene expression profile or other alterations suggestive of activated kinase signaling. Aside from JAK mutations and 1 FLT3 mutation, no somatic mutations were found in any other tyrosine kinases, suggesting that alternative mechanisms are responsible for activated kinase signaling in high-risk ALL.


Journal of Clinical Oncology | 2008

Gene Expression Signatures Predictive of Early Response and Outcome in High-Risk Childhood Acute Lymphoblastic Leukemia: A Children's Oncology Group Study

Deepa Bhojwani; Huining Kang; Renée X. de Menezes; Wenjian Yang; Harland N. Sather; Naomi P. Moskowitz; Dong Joon Min; Jeffrey W. Potter; Richard C. Harvey; Stephen P. Hunger; Nita L. Seibel; Elizabeth A. Raetz; Rob Pieters; Martin A. Horstmann; Mary V. Relling; Monique L. den Boer; Cheryl L. Willman; William L. Carroll

PURPOSE To identify children with acute lymphoblastic leukemia (ALL) at initial diagnosis who are at risk for inferior response to therapy by using molecular signatures. PATIENTS AND METHODS Gene expression profiles were generated from bone marrow blasts at initial diagnosis from a cohort of 99 children with National Cancer Institute-defined high-risk ALL who were treated uniformly on the Childrens Oncology Group (COG) 1961 study. For prediction of early response, genes that correlated to marrow status on day 7 were identified on a training set and were validated on a test set. An additional signature was correlated with long-term outcome, and the predictive models were validated on three large, independent patient cohorts. Results We identified a 24-probe set signature that was highly predictive of day 7 marrow status on the test set (P = .0061). Pathways were identified that may play a role in early blast regression. We have also identified a 47-probe set signature (which represents 41 unique genes) that was predictive of long-term outcome in our data set as well as three large independent data sets of patients with childhood ALL who were treated on different protocols. However, we did not find sufficient evidence for the added significance of these genes and the derived predictive models when other known prognostic features, such as age, WBC, and karyotype, were included in a multivariate analysis. CONCLUSION Genes and pathways that play a role in early blast regression may identify patients who may be at risk for inferior responses to treatment. A fully validated predictive gene expression signature was defined for high-risk ALL that provided insight into the biologic mechanisms of treatment failure.


Blood | 2012

Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study

Huining Kang; Carla S. Wilson; Richard C. Harvey; I-Ming Chen; Maurice H. Murphy; Susan R. Atlas; Edward J. Bedrick; Meenakshi Devidas; Andrew J. Carroll; Blaine W. Robinson; Ronald W. Stam; Maria Grazia Valsecchi; Rob Pieters; Nyla A. Heerema; Joanne M. Hilden; Carolyn A. Felix; Gregory H. Reaman; Bruce M. Camitta; Naomi J. Winick; William L. Carroll; Zoann E. Dreyer; Stephen P. Hunger; Cheryl L. Willman

Gene expression profiling was performed on 97 cases of infant ALL from Childrens Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.


Cancer Research | 2010

Multivitamins, Folate, and Green Vegetables Protect against Gene Promoter Methylation in the Aerodigestive Tract of Smokers

Christine A. Stidley; Maria A. Picchi; Shuguang Leng; Randy Willink; Richard E. Crowell; Kristina G. Flores; Huining Kang; Tim Byers; Frank D. Gilliland; Steven A. Belinsky

One promising approach for early detection of lung cancer is by monitoring gene promoter hypermethylation events in sputum. Epidemiologic studies suggest that dietary fruits and vegetables and the micronutrients they contain may reduce risk of lung cancer. In this study, we evaluated whether diet and multivitamin use influenced the prevalence of gene promoter methylation in cells exfoliated from the aerodigestive tract of current and former smokers. Members (N = 1,101) of the Lovelace Smokers Cohort completed the Harvard Food Frequency Questionnaire and provided a sputum sample that was assessed for promoter methylation of eight genes commonly silenced in lung cancer and associated with risk for this disease. Methylation status was categorized as low (fewer than two genes methylated) or high (two or more genes methylated). Logistic regression models were used to identify associations between methylation status and 21 dietary variables hypothesized to affect the acquisition of gene methylation. Significant protection against methylation was observed for leafy green vegetables [odds ratio (OR) = 0.83 per 12 monthly servings; 95% confidence interval (95% CI), 0.74-0.93] and folate (OR, 0.84 per 750 microg/d; 95% CI, 0.72-0.99). Protection against gene methylation was also seen with current use of multivitamins (OR, 0.57; 95% CI, 0.40-0.83). This is the first cohort-based study to identify dietary factors associated with reduced promoter methylation in cells exfoliated from the airway epithelium of smokers. Novel interventions to prevent lung cancer should be developed based on the ability of diet and dietary supplements to affect reprogramming of the epigenome.


Nature Medicine | 2013

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint

Srividya Swaminathan; Chuanxin Huang; Huimin Geng; Zhengshan Chen; Richard C. Harvey; Huining Kang; Carina Ng; Björn Titz; Christian Hurtz; Mohammed Firas Sadiyah; Daniel Nowak; Gabriela B. Thoennissen; Vikki Rand; Thomas G. Graeber; H. Phillip Koeffler; William L. Carroll; Cheryl L. Willman; Andrew G. Hall; Kazuhiko Igarashi; Ari Melnick; Markus Müschen

The B cell–specific transcription factor BACH2 is required for affinity maturation of B cells. Here we show that Bach2-mediated activation of p53 is required for stringent elimination of pre-B cells that failed to productively rearrange immunoglobulin VH-DJH gene segments. After productive VH-DJH gene rearrangement, pre-B cell receptor signaling ends BACH2-mediated negative selection through B cell lymphoma 6 (BCL6)-mediated repression of p53. In patients with pre-B acute lymphoblastic leukemia, the BACH2-mediated checkpoint control is compromised by deletions, rare somatic mutations and loss of its upstream activator, PAX5. Low levels of BACH2 expression in these patients represent a strong independent predictor of poor clinical outcome. In this study, we demonstrate that Bach2+/+ pre-B cells resist leukemic transformation by Myc through Bach2-dependent upregulation of p53 and do not initiate fatal leukemia in transplant-recipient mice. Chromatin immunoprecipitation sequencing and gene expression analyses carried out by us revealed that BACH2 competes with BCL6 for promoter binding and reverses BCL6-mediated repression of p53 and other cell cycle checkpoint–control genes. These findings identify BACH2 as a crucial mediator of negative selection at the pre-B cell receptor checkpoint and a safeguard against leukemogenesis.


Cancer Discovery | 2016

Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma.

Kathryn J. Brayer; Candace A. Frerich; Huining Kang; Scott A. Ness

UNLABELLED Adenoid cystic carcinoma (ACC), the second most common malignancy of salivary glands, is a rare tumor with a bleak prognosis for which therapeutic targets are unavailable. We used RNA sequencing (RNA-seq) to analyze low-quality RNA from archival, formaldehyde-fixed, paraffin-embedded samples. In addition to detecting the most common ACC translocation, t(6;9) fusing the MYB proto-oncogene to NFIB, we also detected previously unknown t(8;9) and t(8;14) translocations fusing the MYBL1 gene to the NFIB and RAD51B genes, respectively. RNA-seq provided information about gene fusions, alternative RNA splicing, and gene expression signatures. Interestingly, tumors with MYB and MYBL1 translocations displayed similar gene expression profiles, and the combined MYB and MYBL1 expression correlated with outcome, suggesting that the related MYB proteins are interchangeable oncogenic drivers in ACC. Our results provide important details about the biology of ACC and illustrate how archival tissue samples can be used for detailed molecular analyses of rare tumors. SIGNIFICANCE Using RNA-seq to perform whole-transcriptome analysis of archival ACC tumor samples, we identified novel, recurrent gene fusions, detected alternative RNA splicing, and established gene expression signatures that provide detailed information about the biology of ACC tumors.

Collaboration


Dive into the Huining Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Hunger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

I-Ming Chen

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan R. Atlas

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Camitta

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge