Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huiqin Sun is active.

Publication


Featured researches published by Huiqin Sun.


American Journal of Pathology | 2012

miR-21 Regulates Skin Wound Healing by Targeting Multiple Aspects of the Healing Process

Tao Wang; Yimei Feng; Huiqin Sun; Lilong Zhang; Lei Hao; Chunmeng Shi; Junping Wang; Rong Li; Xinze Ran; Yongping Su; Zhongmin Zou

With the clarification of the important roles of microRNAs (miRNAs) in diverse physiologic and pathologic processes, the effects of miRNAs in wound healing have attracted more attention recently. However, the global pattern of miRNA expression in wound tissue is still unknown. In the present study, we depicted the miRNA profile and identified at least 54 miRNAs, including miR-21, changed for more than twofold at the stage of granulation formation during wound healing. These miRNAs were closely related to the major events of wound healing, including cell migration and proliferation, angiogenesis, and matrix remolding. Furthermore, we found that miR-21 was up-regulated after skin injury, mainly in activated and migrating epithelial cells of epidermis and mesenchymal cells of dermis. Locally antagonizing miR-21 by directly injecting antagomir to wound edge caused significant delay of wound closure with impaired collagen deposition. Unexpectedly, we found wounds treated with miR-21 antagomir had an obvious defect in wound contraction at an early stage of wound healing. The significant role of miR-21 in wound contraction was further confirmed by in vivo gain-of-function and in vitro loss-of-function experiments. In conclusion, the present study has for the first time depicted miRNA profiling of wound healing and demonstrated the involvement of miR-21 in regulating the wound contraction and collagen deposition. These results suggest that miR-21 may be a new medical target in skin wound manipulation.


Expert Opinion on Biological Therapy | 2010

More insight into mesenchymal stem cells and their effects inside the body

Zhongmin Zou; Yong Zhang; Lei Hao; Fengchao Wang; Dengqun Liu; Yongping Su; Huiqin Sun

Importance of the field: The pan-tissue existence and multipotency of differentiation make mesenchymal stem cells (MSCs) an attractive source of cells as tissue repair cells, seeds of engineered tissue, vehicles for gene therapy or in combination to promote tissue regeneration in wound healing and disease recovery. Areas covered in this review: This review focuses on recent understanding on MSCs basic biological characteristics and the mechanisms underlying the therapeutic effects of MSCs in vivo. What the reader will gain: The gene expression profiles for mRNA, protein, microRNA and cell surface marker of MSCs are summarized. Special attention is given to miRNA expression and its relationship with the characteristics of MSCs. The mechanisms of therapeutic effects of MSCs are attributed to their ability to migrate along chemokine gradients, differentiate into tissue-specific cells, enhance angiogenesis of wound tissue and regulate immune response. As examples, a detailed description is given on the regeneration of functional sweat glands on burned skin as well as neural cells in middle cerebral artery occlusion (MCAO) animals upon MSC transplantation. Take home message: Based on current data, although limited, the mesenchymal–epithelial transition is proposed to be one of the important ways for MSCs to participate tissue repair.


Differentiation | 2010

Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro

Mingke Wang; Yongping Su; Huiqin Sun; Tao Wang; Guohe Yan; Xinze Ran; Fengchao Wang; Tianming Cheng; Zhongmin Zou

A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel-Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells.


International Journal of Hematology | 2012

Mesenchymal stromal cells for cell therapy: besides supporting hematopoiesis

Lei Hao; Huiqin Sun; Jin Wang; Tao Wang; Mingke Wang; Zhongmin Zou

Mesenchymal stromal cells (MSC) have attracted the attention of scientists and clinicians due to their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. Some essential problems remain to be solved before the clinical application of MSC. Platelet lysate (PL) has recently been used as a substitute for FBS in MSC amplification in vitro to achieve clinically applicable numbers of MSC. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC have shown therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. It has been confirmed that MSC promote hematopoietic cell engraftment and immune recovery after allogeneic hematopoietic stem cell transplantation, probably through the provision of cytokines, matrix proteins, and cell-to-cell contacts. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. These cells thus present as promising candidates for cellular therapy in the fields of regenerative medicine, allogeneic hematopoietic stem cell transplantation, and autoimmune disorders.


Radiation Research | 2008

Progress in Research on Radiation Combined Injury in China

Zhongmin Zou; Huiqin Sun; Yongping Su; Tianmin Cheng; Chengji Luo

Abstract Zou, Z., Sun, H., Su, Y., Cheng, T. and Luo, C. Progress in Research on Radiation Combined Injury in China. Radiat. Res. 169, 722–729 (2008). The significant feature of radiation combined injury is the occurrence of a combined effect. For decades our institute has focused on studying the key complications of radiation-burn injury, including shock, suppression of hematopoiesis and immunity, gastrointestinal damage and local refractory wound healing. Here we summarize recent advancements in elucidating the mechanisms of and potential treatments for radiation combined injury. Concerning the suppression and regeneration of hematopoiesis in radiation combined injury, mechanisms of megakaryocyte damage have been elucidated and a new type of fusion protein stimulating thrombopoiesis has been developed and is being tested in animals. With regard to the damage and repair of intestinal epithelium, the important molecular mechanisms of radiation combined injury have been clarified, and new measures to prevent and treat gastrointestinal tract injury are proposed. With respect to the difficulties encountered in wound healing, the underlying causes of radiation combined injury have been proposed, and some potential methods to accelerate wound closure are under study. Systemic experiments have been done to determine the appropriate time for eschar excision and skin grafting, and the results provided significant insight into clinical treatment of the injury. In the search for early therapeutic regimens for severe burns and radiation combined injury to prevent deterioration of injuries and to improve survival, cervical sympathetic ganglion block was used for the treatment of animals with radiation combined injury and had significant benefits. These research advancements have potential for application in on-site emergency rescue and in-hospital treatment of radiation combined injury.


International Journal of Radiation Biology | 2011

Topical application of hPDGF-A-modified porcine BMSC and keratinocytes loaded on acellular HAM promotes the healing of combined radiation-wound skin injury in minipigs

Guohe Yan; Huiqin Sun; Feng Wang; Junping Wang; Fengchao Wang; Zhongmin Zou; Tianmin Cheng; Guoping Ai; Yongping Su

Purpose: To evaluate the efficacy of cultured cutaneous substitute (CCS) in accelerating the healing of combined radiation-skin wound injury (CRWI) in minipigs. Material and methods: Autologous porcine bone marrow-derived mesenchymal stem cells (BMSC) and skin-derived keratinocytes (SK) were infected by recombinant retrovirus expressing human (h) platelet-derived growth factor-A (hPDGF-A). CCS was constructed by loading acellular human amniotic membrane (HAM) with normal porcine BMSC and SK (BMSC−/SK−CCS) or with hPDGF-A modified counterparts (BMSC+/SK+CCS). The expression of exogenous hPDGF-A in cells and CCS was assessed by reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). The CCS or HAM were grafted to the dorsal CRWI sites (20 Gy local irradiation plus full-thickness skin removal, diameter = 40 mm) of minipigs. Wound healing rate and pathological changes were observed. Results: High levels of hPDGF-A expression were confirmed in gene-modified cells (3780 pg/ml), cultured CCS (506 pg/ml) and transplanted CCS (250 pg/ml). The transplantation of the BMSC+/SK+CCS resulted in a shorter healing time (16–18, days) (P < 0.05 vs. other groups). The healing rates ranked as BMSC+/SK+CCS > BMSC−/SK−CCS > HAM > wound control. Pathologically, there were better granulation formation and re-epithelialisation, and collagen deposition in BMSC+/SK+CCS-treated wound than those in other groups. The angiogenesis ability followed the same order as healing rate of different groups. At day 7, the area densities of vasculature in granulation tissue of group BMSC+/SK+CCS, BMSC−/SK−CCS, HAM, wound only were 15.4, 10.3, 6.0 and 5.7%, respectively, while the number densities of vasculature was 767, 691, 126 and 109 (number/mm2), respectively. Conclusions: Topical transplantation of hPDGF-A modified CCS may be applicable to the management of refractory wounds.


PLOS ONE | 2014

Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma.

Huiqin Sun; De-Yu Guo; Yongping Su; Dongmei Yu; Qingliang Wang; Tao Wang; Qing Zhou; Xinze Ran; Zhongmin Zou

Objectives To investigate the role of pericytes in constructing the malformed microvessels (MVs) and participating microvascular architecture heterogeneity of glioma. Methods Forty human glioma tissue samples (WHO grade II-IV) were included in present study. Observation of blood vessel patterns, quantitative analysis of endothelial cells (ECs)- and pericyte-labeled MVs and comparison between malignant grades based on single- or double-immunohistochemical staining. The MV number density (MVND), microvascular pericyte number density (MPND), and microvascular pericyte area density (MPAD) were calculated. The expression of PDGFβ was also scored after immunostaining. Results In grade II glioma, most of tumor MVs were the thin-wall CD34+ vessels with near normal morphology. In addition to thin-wall CD34+ MVs, more thick-wall MVs were found in grade III glioma, which often showed α-SMA positive. Most of MVs in grade IV glioma were in the form of plexus, curled cell cords and glomeruloid microvascular proliferation while the α-SMA+ cells were the main components. The MVs usually showed disordered arrangement, loose connection and active cell proliferation as shown by Ki67 and α-SMA coexpression. With the increase of glioma grades, the α-SMA+ MVND, CD34+ MVND and MPND were significantly augmented although the increase of CD34+ MVND but not MPAD was statistically insignificant between grade III and IV. It was interesting that some vessel-like structures only consist of α-SMA+ cells, assuming the guiding role of pericytes in angiogenesis. The expression level of PDGFβ was upregulated and directly correlated with the MPND in different glioma grades. Conclusion Hyperplasia of pericytes was one of the significant characteristics of malignant glioma and locally proliferated pericytes were the main constituent of MVs in high grade glioma. The pathological characteristics of pericytes could be used as indexes of malignant grades of glioma.


International Journal of Molecular Sciences | 2015

Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair

Tao Wang; Shuang Long; Na Zhao; Yu Wang; Huiqin Sun; Zhongmin Zou; Junping Wang; Xinze Ran; Yongping Su

Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.


Biochimica et Biophysica Acta | 2016

Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5

Tao Wang; Na Zhao; Shuang Long; Lan Ge; Aiping Wang; Huiqin Sun; Xinze Ran; Zhongmin Zou; Junping Wang; Yongping Su

Keratinocyte migration is essential for re-epithelialization during skin wound healing, but the molecular mechanisms regulating this cellular response remain to be completely clarified. Here we show that keratinocyte-specific miR-205 is significantly downregulated in the leading edge of the migrating epithelial tongue after skin injury in mice. In HaCaT keratinocytes, miR-205 could be downregulated by TGF-β1 stimulation. And similar to the effect of TGF-β1, miR-205 knockdown could promote keratinocyte migration in wound scratch model in vitro. Furthermore, topical inhibition of miR-205 by administrating Pluronic gel containing antagomir-205 could accelerate re-epithelialization in mouse skin wound model in vivo. Moreover, we identified integrin alpha 5 (ITGA5) as one key functional miR-205 target in the re-epithelialization process and epidermal downregulation of miR-205 may desilence ITGA5 to promote keratinocyte migration. And knockdown of ITGA5 would abolish the pro-migratory effects of miR-205 inhibition in vitro. Whats more, we found dysregulation of miR-205 and its target ITGA5 in epidermis of clinical chronic wound samples with persistence of high level miR-205 and absence of ITGA5. Our findings indicate that downregulation of miR-205 in the leading migrating keratinocytes is critical for re-epithelialization and miR-205 may be a potential therapeutic target for chronic wounds.


International Journal of Molecular Sciences | 2015

miR-198 Represses the Proliferation of HaCaT Cells by Targeting Cyclin D2

Jian Wang; Guorong Dan; Tao Shangguan; Han Hao; Ran Tang; Kaige Peng; Jiqing Zhao; Huiqin Sun; Zhongmin Zou

Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2.

Collaboration


Dive into the Huiqin Sun's collaboration.

Top Co-Authors

Avatar

Zhongmin Zou

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yongping Su

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Junping Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Tao Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xinze Ran

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Mingke Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Fengchao Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Hao

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiqing Zhao

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunmeng Shi

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge