Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huirong Jing is active.

Publication


Featured researches published by Huirong Jing.


Shock | 2014

Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury.

Wei Xu; Yang Lu; Jihong Yao; Zhenlu Li; Zhao Chen; Guangzhi Wang; Huirong Jing; Xinyuan Zhang; Mingzhu Li; Jinyong Peng; Xiaofeng Tian

ABSTRACT Background: High-mobility group protein box 1 (HMGB1) is essential in the response to injury during sepsis. We hypothesized that resveratrol (RESV) administration would inhibit nuclear-cytoplasmic HMGB1 translocation in hepatocytes, which is associated with sirtuin 1 (SIRT1) upregulation. We investigated the regulatory role of SIRT1 in HMGB1 nucleocytoplasmic translocation and its effect on sepsis-induced liver injury. Methods: Rats were randomly assigned to pretreatment with RESV (60 mg/kg per day), nicotinamide (60 mg/kg per day), or vehicle (olive oil), which was administered by gavage for 3 days directly before cecal ligation and puncture was performed to induce sepsis. Parallel control groups were established. Rats were killed 24 h after surgery, and cytokine production, histology, apoptosis, SIRT1, serum HMGB1, nuclear and cytoplasmic HMGB1/ac-HMGB1, and the interaction between SIRT1 and HMGB1 were evaluated. In vitro evaluations were performed in human liver L02 cells subjected to lipopolysaccharide-induced injury, and siRNA-mediated SIRT1 knockdown experiments were performed. Results: Sepsis-induced serum aminotransferase activities and proinflammatory chemokine levels were reduced by RESV pretreatment, which also improved liver histological parameters in association with SIRT1 upregulation. Resveratrol inhibited HMGB1 cytoplasmic translocation. Nicotinamide, an SIRT1 inhibitor, reduced the SIRT1-mediated suppression of HMGB1 translocation and aggravated cecal ligation and puncture–induced liver damage. Sirtuin 1 knockdown in vitro confirmed that RESV increased the SIRT1-mediated repression of HMGB1 translocation. In vivo, SIRT1 and HMGB1 physically interacted in the nucleus, and SIRT1 regulated HMGB1 acetylation in response to septic liver injury. Conclusions: Resveratrol protects against sepsis-induced liver injury through the SIRT1-mediated HMGB1 nucleocytoplasmic translocation pathway, a new potential therapeutic target in sepsis-induced liver injury.


Toxicology Letters | 2014

Salvianolic acid B protects against acute ethanol-induced liver injury through SIRT1-mediated deacetylation of p53 in rats.

Mingzhu Li; Yang Lu; Yan Hu; Xiaohan Zhai; Wei Xu; Huirong Jing; Xiaofeng Tian; Yuan Lin; Dongyan Gao; Jihong Yao

Salvianolic acid B (SalB) is isolated from the traditional Chinese medical herb salvia miltiorrhiza. It has many biological and pharmaceutical activities. This study aimed to investigate the effect of SalB on acute ethanol-induced hepatic injury in rats and to explore the role of SIRT1 in this process. The results showed that pretreatment with SalB significantly reduced ethanol-induced elevation in aminotransferase activities, decreased hepatotoxic cytokine levels such as Interleukin-6 (IL-6), and increased the antioxidant enzyme activity. Moreover, SalB pretreatment reversed the increase in NF-κB, cleaved caspase-3 and decrease in B-cell lymphoma-extra large (Bcl-xL) caused by ethanol exposure. Importantly, SalB pretreatment significantly increased the expression of SIRT1, a NAD(+)-dependent deacetylase, whereas the increase in SIRT1 was accompanied by decreased acetyl-p53 expression. In HepG2 cells, SalB pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly increased the acetylation of p53, and blocked SalB-induced acetylation of p53 down-regulation. Collectively, this study indicated that SalB can alleviate acute ethanol-induced hepatocyte apoptosis through SIRT1-mediated deacetylation of p53 pathway.


Oxidative Medicine and Cellular Longevity | 2014

The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model.

Zhe Fan; Huirong Jing; Ji-Hong Yao; Yang Li; Xiaowei Hu; Huizhu Shao; Gang Shen; Jiyong Pan; Fuwen Luo; Xiaofeng Tian

Objective. In this study, we investigated the protective effect and mechanism of curcumin on a rat model of intestinal ischemia/reperfusion (I/R), which induces an acute liver lesion. Methods. Curcumin was injected into rats in the curcumin groups through left femoral vein. The same volume of vehicle (0.9% normal saline) was injected into sham and I/R groups. Blood and liver tissue were gathered for serological and histopathological determination. Results. Intestinal I/R led to severe liver injury manifested as a significant increase in serum AST and ALT levels; all of those were reduced by treatment with curcumin. Simultaneously, the activity of SOD in liver decreased after intestinal I/R, which was increased by curcumin treatment. On the other hand, curcumin reduced MPO activity of liver tissue, as well as serum IL-6 and TNF-α levels observably. This is in parallel with the decreased level of liver intercellular cell adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) expression. Conclusion. Our findings suggest that curcumin treatment attenuates liver lesion induced by intestinal I/R, attributable to the antioxidative and anti-inflammatory effect via inhibition of the NF-κB pathway.


Journal of Surgical Research | 2012

MG132 Alleviates Liver Injury Induced by Intestinal Ischemia/Reperfusion in Rats: Involvement of the AhR and NFκB Pathways

Huirong Jing; Gang Shen; Guangzhi Wang; Feng Zhang; Yubing Li; Fuwen Luo; Ji-Hong Yao; Xiaofeng Tian

BACKGROUND MG132 is a potent antioxidant and has been reported to play a protective role in ischemia/reperfusion (I/R) of many organs. Recent studies have shown that the Aryl hydrocarbon receptor (AhR) may play a beneficial role in I/R of many organs and an AhR agonist has been implicated in an anti-inflammatory role. MG132 might function as an AhR agonist through proteasome inhibition, possibly through the inhibition of NFκB. Herein, we hypothesized that MG132 may play a protective role in liver injury induced by intestinal I/R and we analyzed the expression behavior of AhR and NFκB to determine whether the two factors play a role in intestinal I/R. MATERIALS AND METHODS Thirty-two Sprague-Dawley rats were divided into four groups: control, I/R, MG132 control, and MG132 pretreatment. The I/R and MG132 pretreatment groups were subjected to mesenteric arterial ischemia for 1 h and reperfusion for 3 h. The control and MG132 control groups underwent surgical preparation including isolation of the superior mesenteric artery (SMA) without occlusion. The MG132 control and MG132 pretreatment groups were subjected to intraperitoneal administration of 0.5 mg/kg MG132 30 min before surgery. We collected serum specimens to measure TNF-α, IL-6, liver tissue levels of malondialdehyde (MDA), AhR, and cyp1a2; NFκB, IκBα, and ICAM-1 were also tested. Histologic changes of liver and intestine were subsequently evaluated. RESULTS Compared with the control group, significant increases in MDA, NFκB, and ICAM-1 levels were accompanied by decreases in AhR, cyp1a2, and IκBα expression in the liver in the I/R group, which is consistent with liver and intestinal tissue injury. MG132 blocked the alterations of the indicators above. There were no changes in the MG132 control group compared with the control group in the indicators above. CONCLUSIONS This study demonstrated that MG132 has a significant effect in protection against liver injury induced by intestinal I/R, which may be due to modulation of the AhR and NFκB pathways.


Life Sciences | 2011

Inhibition of Rho kinase by fasudil hydrochloride attenuates lung injury induced by intestinal ischemia and reperfusion

Yang Li; Ji-Hong Yao; Xiaowei Hu; Zhe Fan; Li Huang; Huirong Jing; Ke-Xin Liu; Xiaofeng Tian

AIM The aim of this study is to evaluate the role of Rho-kinase in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) and the preconditioning effects of fasudil hydrochloride. The novel therapeutic approach of using Rho-kinase inhibitors in the treatment of intestinal I/R is introduced. METHODS Sprague-Dawley (SD) rats were divided into 4 groups: intestinal I/R group, two fasudil pretreatment groups (7.5 mg/kg and 15 mg/kg), and controls. Intestinal and lung histopathology was evaluated; myeloperoxidase (MPO) and superoxide dismutase (SOD) levels in lung parenchyma were determined. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. eNOS and P-ERM expression were measured by Western Blot. RESULTS Lung and intestinal injury were induced by intestinal I/R, characterized by histological damage and a significant increase in BALF protein. Compared to controls, serum TNF-α, IL-6, and lung MPO activity increased significantly in the I/R group, while SOD activity decreased. A strongly positive P-ERM expression was observed, while eNOS expression was weak. After fasudil administration, injury was ameliorated. Serum TNF-α, IL-6, lung MPO and P-ERM expression decreased significantly as compared to the I/R group, while SOD activity and eNOS expression increased significantly. SIGNIFICANCE Rho-kinase plays a key role in the pathogenesis of lung injury induced by intestinal I/R. The inhibition of the Rho-kinase pathway by fasudil hydrochloride may prevent lung injury.


Journal of Trauma-injury Infection and Critical Care | 2012

Suppression of the p66shc adapter protein by protocatechuic acid prevents the development of lung injury induced by intestinal ischemia reperfusion in mice.

Guangzhi Wang; Jihong Yao; Huirong Jing; Feng Zhang; Musen Lin; Lei Shi; Hang Wu; Dongyan Gao; Kexin Liu; Xiaofeng Tian

BACKGROUND Intestinal ischemia/reperfusion (I/R) causes severe histological injury, reactive oxygen species activation, and cell apoptosis in the lung. In this study, we investigated, using a murine intestinal I/R model, the effect of a polyphenolic compound, protocatechuic acid (PCA), in modulation of ShcA and in protection of the lung from I/R-induced injury. METHODS Fifty ICR mice were randomly divided into five groups, including a control group, intestinal I/R group, control + PCA group, I/R + PCA low-dose group, and I/R + PCA high-dose group. The I/R and I/R + PCA groups were subjected to mesenteric arterial ischemia for 45 minutes and reperfusion for 90 minutes. The control and control + PCA groups underwent a surgical procedure that included isolation of the superior mesenteric artery without occlusion. In all PCA-pretreated groups, the mice received intraperitoneal PCA administration for three consecutive days. Serum specimens were collected for measuring tumor necrosis factor-&agr; and interleukin 6, while lung tissues were harvested for histopathologic assessment including glutathione (GSH) and GSH peroxidase assay. Lung expression of p66shc, phosphorylated p66shc, manganese superoxide dismutase, caspace-3, and Bcl-xL were determined by Western blotting for protein level and semiquantitative reverse transcription–polymerase chain reaction analysis for mRNA level. RESULTS PCA pretreatment markedly reduced I/R-induced lung injury as indicated by histological alterations; the decreases in tumor necrosis factor-&agr;, interleukin 6, and caspase-3 expression levels; and the increases in GSH, GSH peroxidase, manganese superoxide dismutase, and Bcl-xL levels in the lung. Moreover, PCA treatment down-regulated p66shc expression and phosphorylation. CONCLUSION PCA has a significant protective effect in lung injury induced by intestinal I/R. The protective effect of PCA may be attributed to the suppression of p66shc and the modulation of downstream antioxidative/antiapoptotic factors.


Apoptosis | 2014

Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway

Guangzhi Wang; Zhao Chen; Feng Zhang; Huirong Jing; Wei Xu; Shili Ning; Zhenlu Li; Kexin Liu; Jihong Yao; Xiaofeng Tian

Abstract Intestinal ischemia–reperfusion (I/R) is a serious clinical dilemma with high morbidity and mortality. Remote organ damage, especially acute lung injury and liver injury are common complications that contribute to the high mortality rate. We previously demonstrated that activation of PKCβII is specifically involved in the primary injury of intestinal I/R. Considering the tissue-specific features of PKC activation, we hypothesized that some kind of PKC isoform may play important roles in the progression of secondary injury in the remote organ. Mice were studied in in vivo model of intestinal I/R. The activation of PKC isoforms were screened in the lung and liver. Interestingly, we found that PKCβII was also activated exclusively in the lung and liver after intestinal I/R. PKCβII suppression by a specific inhibitor, LY333531, significantly attenuated I/R-induced histologic damage, inflammatory cell infiltration, oxidative stress, and apoptosis in these organs, and also alleviated systemic inflammation. In addition, LY333531 markedly restrained p66shc activation, mitochondrial translocation, and binding to cytochrome-c. These resulted in the decrease of cytochrome-c release and caspase-3 cleavage, and an increase in glutathione and glutathione peroxidase. These data indicated that activated PKC isoform in the remote organ, specifically PKCβII, is the same as that in the intestine after intestinal I/R. PKCβII suppression protects against remote organ injury, which may be partially attributed to the p66shc-cytochrome-c axis. Combined with our previous study, the development of a specific inhibitor for prophylaxis against intestinal I/R is promising, to prevent multiple organ injury.


Disease Markers | 2015

Mean Platelet Volume and Platelet Distribution Width as Markers in the Diagnosis of Acute Gangrenous Appendicitis

Zhe Fan; Jiyong Pan; Yingyi Zhang; Ziyi Wang; Ming Zhu; Baoshun Yang; Lei Shi; Huirong Jing

Introduction. Acute gangrenous appendicitis (AGA) is a common medical condition; however, the grade of appendicitis usually cannot be established preoperatively. We have attempted to identify some indicators, such as the mean platelet volume (MPV) and the platelet distribution width (PDW), to diagnose AGA. Aims. To evaluate whether or not the MPV and PDW are suitable markers to diagnose AGA. Methods. A retrospective study of 160 patients with AGA and 160 healthy patients was undertaken. Disease diagnosis was confirmed based on the pathologic examination of surgical specimens. Patient white blood cell (WBC) count, neutrophil ratio (NR), platelet (PLT) count, MPV, PDW, and hematocrit (HCT) were analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the sensitivity and specificity of these indices in AGA. Results. There were no significant differences between the AGA and control groups in age and gender. Compared to the control group, the WBC count, NR, and PDW were significantly higher (P < 0.001, resp.) and the MPV and HCT were significantly lower (P < 0.001, resp.) in the AGA group. The diagnostic specificities of the WBC count, NR, PLT count, MPV, PDW, and HCT were 86.3%, 92.5%, 58.1%, 81.7%, 83.9%, and 66.3%, respectively. Therefore, the NR had the highest diagnostic specificity for the diagnosis of AGA. Conclusions. This is the first study to assess the MPV and PDW in patients with AGA. Our present study showed that the MPV is reduced and the PDW is increased in patients with AGA; the sensitivity of PDW was superior to the MPV. A decreased MPV value and an increased PDW could serve as two markers to diagnose AGA. The NR had the highest specificity for the diagnosis of AGA.


Medicine | 2015

Terminal Ileitis Induced by Henoch–Schonlein Purpura That Presented as Acute Appendicitis: A Case Report

Zhe Fan; Xiaofeng Tian; Jiyong Pan; Yang Li; Yingyi Zhang; Huirong Jing

AbstractHenoch–Schonlein purpura (HSP) is a self-limited autoimmune disease, the cause of which is not clear. Gastrointestinal involvement is often the main symptom of HSP. We report an unusual and rare case in a patient who was diagnosed with HSP. This is the second report of terminal ileitis induced by HSP that presented as acute appendicitis.We report a 21-year-old man who presented with right lower abdominal pain, and was diagnosed with acute appendicitis. Terminal ileitis was diagnosed intraoperatively, and when a rash occurred postoperatively, the final diagnosis was HSP.When the rash occurred, HSP was diagnosed and methylprednisolone was administered for 5 days.The diagnosis of HSP is difficult to establish, especially when the purpura occurs after gastrointestinal involvement; thus, abdominal pain should not be ignored and HSP should be considered.


Cell Death and Disease | 2018

Targeting the miR-665-3p-ATG4B-autophagy axis relieves inflammation and apoptosis in intestinal ischemia/reperfusion

Zhenlu Li; Guangzhi Wang; Dongcheng Feng; Guo Zu; Yang Li; Xue Shi; Yan Zhao; Huirong Jing; Shili Ning; Weidong Le; Jihong Yao; Xiaofeng Tian

Autophagy is an essential cytoprotective response against pathologic stresses that selectively degrades damaged cellular components. Impaired autophagy contributes to organ injury in multiple diseases, including ischemia/reperfusion (I/R), but the exact mechanism by which impaired autophagy is regulated remains unclear. Several researchers have demonstrated that microRNAs (miRNAs) negatively regulate autophagy by targeting autophagy-related genes (ATGs). Therefore, the effect of ATG-related miRNAs on I/R remains a promising research avenue. In our study, we found that autophagy flux is impaired during intestinal I/R. A miRNA microarray analysis showed that miR-665-3p was highly expressed in the I/R group, which was confirmed by qRT-PCR. Then, we predicted and proved that miR-665-3p negatively regulates ATG4B expression in Caco-2 and IEC-6 cells. In ileum biopsy samples from patients with intestinal infarction, there was an inverse correlation between miR-665-3p and ATG4B expression, which supports the in vitro findings. Moreover, based on miR-665-3p regulation of autophagy in response to hypoxia/reoxygenation in vitro, gain-of-function and loss-of-function approaches were used to investigate the therapeutic potential of miR-665-3p. Additionally, we provide evidence that ATG4B is indispensable for protection upon inhibition of miR-665-3p. Finally, we observed that locked nucleic acid-modified inhibition of miR-665-3p in vivo alleviates I/R-induced systemic inflammation and apoptosis via recovery of autophagic flux. Our study highlights miR-665-3p as a novel small molecule that regulates autophagy by targeting ATG4B, suggesting that miR-665-3p inhibition may be a potential therapeutic approach against inflammation and apoptosis for the clinical treatment of intestinal I/R.

Collaboration


Dive into the Huirong Jing's collaboration.

Top Co-Authors

Avatar

Xiaofeng Tian

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Jihong Yao

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Guangzhi Wang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Ji-Hong Yao

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Li

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhenlu Li

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Fuwen Luo

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Gang Shen

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Xu

Dalian Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge