Huitang Pan
Beijing Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huitang Pan.
Nature Communications | 2012
Qixiang Zhang; Wenbin Chen; Lidan Sun; Fangying Zhao; Bangqing Huang; Weiru Yang; Ye Tao; Jia Wang; Zhiqiong Yuan; Guangyi Fan; Zhen Xing; Changlei Han; Huitang Pan; Xiao Zhong; Wenfang Shi; Xinming Liang; Dongliang Du; Fengming Sun; Zongda Xu; Ruijie Hao; Tian Lv; Yingmin Lv; Zequn Zheng; Ming Sun; Le Luo; Ming Cai; Yike Gao; Wang J; Ye Yin; Xun Xu
Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.
BMC Genetics | 2014
Lidan Sun; Yaqun Wang; Xiaolan Yan; Tangren Cheng; Kaifeng Ma; Weiru Yang; Huitang Pan; Chengfei Zheng; Xuli Zhu; Jia Wang; Rongling Wu; Qixiang Zhang
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars.
DNA Research | 2015
Jie Zhang; Qixiang Zhang; Tangren Cheng; Weiru Yang; Huitang Pan; Junjun Zhong; Long Huang; Enze Liu
High-density genetic map is a valuable tool for fine mapping locus controlling a specific trait especially for perennial woody plants. In this study, we firstly constructed a high-density genetic map of mei (Prunus mume) using SLAF markers, developed by specific locus amplified fragment sequencing (SLAF-seq). The linkage map contains 8,007 markers, with a mean marker distance of 0.195 cM, making it the densest genetic map for the genus Prunus. Though weeping trees are used worldwide as landscape plants, little is known about weeping controlling gene(s) (Pl). To test the utility of the high-density genetic map, we did fine-scale mapping of this important ornamental trait. In total, three statistic methods were performed progressively based on the result of inheritance analysis. Quantitative trait loci (QTL) analysis initially revealed that a locus on linkage group 7 was strongly responsible for weeping trait. Mutmap-like strategy and extreme linkage analysis were then applied to fine map this locus within 1.14 cM. Bioinformatics analysis of the locus identified some candidate genes. The successful localization of weeping trait strongly indicates that the high-density map constructed using SLAF markers is a worthy reference for mapping important traits for woody plants.
Molecular Genetics and Genomics | 2014
Zongda Xu; Qixiang Zhang; Lidan Sun; Dongliang Du; Tangren Cheng; Huitang Pan; Weiru Yang; Jia Wang
MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.
Plant Molecular Biology Reporter | 2013
Dongliang Du; Ruijie Hao; Tangren Cheng; Huitang Pan; Weiru Yang; Jia Wang; Qixiang Zhang
The APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factors play important roles in plant development and responses to stress. Although the entire genomes of four Rosaceae species have been fully sequenced, no genome-wide analysis of AP2/ERF gene family has yet been reported in the Rosaceae family. In this study, 116 AP2/ERF genes were identified from Chinese plum (Prunus mume). Based on the number of AP2/ERF domains, these PmAP2/ERF genes were classified into three families (AP2, ERF, and RAV) along with a single member. The ERF family was subdivided into 11 groups. Of those, 22 and 41 PmAP2/ERF genes were involved in segmental and tandem duplications, respectively. Putative orthologs in Arabidopsis were identified for 73 PmAP2/ERF genes following synteny analysis. Transcriptome sequencing analysis showed that expression of PmAP2/ERF genes was widely variable.
PLOS ONE | 2013
Lidan Sun; Weiru Yang; Qixiang Zhang; Tangren Cheng; Huitang Pan; Zongda Xu; Jie Zhang; Chuguang Chen
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.
BMC Genetics | 2013
Lidan Sun; Qixiang Zhang; Zongda Xu; Weiru Yang; Yu Guo; Jiuxing Lu; Huitang Pan; Tangren Cheng; Ming Cai
BackgroundMei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume ‘Fenban’ and Prunus mume ‘Kouzi Yudie’ to identify high-quality polymorphic markers between the two cultivars on a large scale.ResultsA total of 1464.1 Mb and 1422.1 Mb of ‘Fenban’ and ‘Kouzi Yudie’ sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent’s SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny.ConclusionsA large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between ‘Fenban’ and ‘Kouzi Yudie’ using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.
PLOS ONE | 2015
Hua Liu; Ming Sun; Dongliang Du; Huitang Pan; Tangren Cheng; Jia Wang; Qixiang Zhang
Background Chrysanthemum morifolium is an important floral crop that is cultivated worldwide. However, due to a lack of genomic resources, very little information is available concerning the molecular mechanisms of flower development in chrysanthemum. Results The transcriptomes of chrysanthemum vegetative buds, floral buds and buds were sequenced using Illumina paired-end sequencing technology. A total of 15.4 Gb of reads were assembled into 91,367 unigenes with an average length of 739 bp. A total of 43,137 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 25,424, 24,321 and 13,704 unigenes were assigned to 56 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 285 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1,876 differentially expressed genes (DEGs) (1,516 up-regulated, 360 down-regulated) were identified between vegetative buds and floral buds, and 3,300 DEGs (1,277 up-regulated, 1,706 down-regulated) were identified between floral buds and buds. Many genes encoding important transcription factors (e.g., AP2, MYB, MYC, WRKY, NAC and CRT) as well as proteins involved in carbohydrate metabolism, protein kinase activity, plant hormone signal transduction, and the defense responses, among others, were considerably up-regulated in floral buds. Genes involved in the photoperiod pathway and flower organ determination were also identified. These genes represent important candidate genes for molecular cloning and functional analysis to study flowering regulation in chrysanthemum. Conclusion This comparative transcriptome analysis revealed significant differences in gene expression and signaling pathway components between the vegetative buds, floral buds and buds of Chrysanthemum morifolium. A wide range of genes was implicated in regulating the phase transition from vegetative to reproductive growth. These results should aid researchers in the study of flower-time regulation, breeding and molecular biology in chrysanthemum.
Scientific Reports | 2017
Yu Han; Huihua Wan; Tangren Cheng; Jia Wang; Weiru Yang; Huitang Pan; Qixiang Zhang
The developmental process that produces the ornate petals of the China rose (Rosa chinensis) is complex and is thought to depend on the balanced expression of a functionally diverse array of genes; however, the molecular basis of rose petal development is largely unknown. Here, petal growth of the R. chinensis cultivar ‘Old Blush’ was divided into four developmental stages, and RNA-seq technology was used to analyse the dynamic changes in transcription that occur as development progresses. In total, 598 million clean reads and 61,456 successfully annotated unigenes were obtained. Differentially expressed gene (DEG) analysis comparing the transcriptomes of the developmental stages resulted in the identification of several potential candidate genes involved in petal development. DEGs involved in anthocyanin biosynthesis, petal expansion, and phytohormone pathways were considered in depth, in addition to several candidate transcription factors. These results lay a foundation for future studies on the regulatory mechanisms underlying rose petal development and may be used in molecular breeding programs aimed at generating ornamental rose lines with desirable traits.
PLOS ONE | 2016
Yuanjun Ye; Ming Cai; Yiqian Ju; Yao Jiao; Lu Feng; Huitang Pan; Tangren Cheng; Qixiang Zhang
The genetic control of plant architecture is a promising approach to breed desirable cultivars, particularly in ornamental flowers. In this study, the F1 population (142 seedlings) derived from Lagerstroemia fauriei (non-dwarf) × L. indica ‘Pocomoke’ (dwarf) was phenotyped for six traits (plant height (PH), internode length (IL), internode number, primary lateral branch height (PLBH), secondary lateral branch height and primary branch number), and the IL and PLBH traits were positively correlated with the PH trait and considered representative indexes of PH. Fifty non-dwarf and dwarf seedlings were pooled and subjected to a specific-locus amplified fragment sequencing (SLAF-seq) method, which screened 1221 polymorphic markers. A total of 3 markers segregating between bulks were validated in the F1 population, with the M16337 and M38412 markers highly correlated with the IL trait and the M25207 marker highly correlated with the PLBH trait. These markers provide a predictability of approximately 80% using a single marker (M25207) and a predictability of 90% using marker combinations (M16337 + M25207) in the F1 population, which revealed that the IL and the PLBH traits, especially the PLBH, were the decisive elements for PH in terms of molecular regulation. Further validation was performed in the BC1 population and a set of 28 Lagerstroemia stocks using allele-specific PCR (AS-PCR) technology, and the results showed the stability and reliability of the SNP markers and the co-determination of PH by multiple genes. Our findings provide an important theoretical and practical basis for the early prediction and indirect selection of PH using the IL and the PLBH, and the detected SNPs may be useful for marker-assisted selection (MAS) in crape myrtle.