Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huitao Li is active.

Publication


Featured researches published by Huitao Li.


Pharmacology | 2016

Effects of Methoxychlor and Its Metabolite Hydroxychlor on Human Placental 3β-Hydroxysteroid Dehydrogenase 1 and Aromatase in JEG-3 Cells.

Shiwen Liu; Baiping Mao; Yanfang Bai; Jianpeng Liu; Huitao Li; Xiaoheng Li; Qingquan Lian; Ren-Shan Ge

Progesterone and estradiol produced by the human placenta are critical for maintenance of pregnancy and fetal development. In the human placenta, 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) is responsible for the formation of progesterone from pregnenolone and aromatase (CYP19A1) for the production of estradiol from androgen. Insecticide methoxychlor (MXC) and its metabolite hydroxychlor (HPTE) may disrupt the activities of these 2 enzymes. In this study, we investigated the effects of MXC and HPTE on steroid production in human placental JEG-3 cells and on HSD3B1 and CYP19A1 activities. MXC and HPTE inhibited progesterone and estradiol production in JEG-3 cells. MXC and HPTE were potent HSD3B1 inhibitors with the half maximal inhibitory concentration (IC50) values of 2.339 ± 0.096 and 1.918 ± 0.078 μmol/l, respectively. MXC had no inhibition on CYP19A1 at 100 μmol/l, while HPTE was a weak inhibitor with IC50 of 97.16 ± 0.10 μmol/l. When pregnenolone was used to determine the inhibitory mode, MXC and HPTE were found to be competitive inhibitors of HSD3B1. When cofactor NAD+ was used, MXC and HPTE were the noncompetitive inhibitors of HSD3B1. When testosterone was used, HPTE was a mixed inhibitor of CYP19A1. In conclusion, MXC and HPTE are potent inhibitors of human HSD3B1, and HPTE is a weak CYP19A1 inhibitor.


Reproductive Toxicology | 2016

Structure-activity relationships of phthalates in inhibition of human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase

Ren-ai Xu; Baiping Mao; Senlin Li; Jianpeng Liu; Xiaojun Li; Huitao Li; Ying Su; Guo-Xin Hu; Qingquan Lian; Ren-Shan Ge

Phthalates are associated with preterm delivery. However, the mechanism is unclear. Progesterone formed by 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and estradiol by aromatase (CYP19A1) in placenta are critical for maintaining pregnancy. In this study, we compared structure-activity relationships (SAR) of 14 phthalates varied in carbon atoms in alcohol moiety to inhibit human HSD3B1 in COS1 and CYP19A1 in JEG-3 cells. There were responses in that only diphthalates with 4-7 carbon atoms were competitive HSD3B1 inhibitors and diphthalates with 6 carbon atoms were CYP19A1 inhibitors. IC50s of dipentyl (DPP), bis(2-butoxyethyl) (BBOP), dicyclohexyl (DCHP), dibutyl (DBP), and diheptyl phthalate (DHP) were 50.12, 32.41, 31.42, 9.69, and 4.87μM for HSD3B1, respectively. DCHP and BBOP inhibited CYP19A1, with IC50s of 64.70 and 56.47μM. DPP, BBOP, DCHP, DBP, and DHP inhibited progesterone production in JEG-3 cells. In conclusion, our results indicate that there is clear SAR for phthalates in inhibition of HSD3B1 and CYP19A1.


Frontiers in Physiology | 2017

Parathyroid Hormone-Related Protein Promotes Rat Stem Leydig Cell Differentiation

Tiantian Song; Yiyan Wang; Huitao Li; Lanlan Chen; Jianpeng Liu; Xianwu Chen; Xiaojun Li; Xiaoheng Li; Linxi Li; Qingquan Lian; Ren-Shan Ge

The regulatory factors for stem Leydig cell development are largely unknown. Herein, we reported that parathyroid hormone-related protein (PTHrP) may be a factor to regulate this process. The effects of PTHrP on rat stem Leydig cell proliferation and differentiation were investigated using a stem Leydig cell culture system and an ethane dimethane sulfonate (EDS)-treated in vivo Leydig cell regeneration model. PTHrP (1,000 pg/ml) significantly increased medium testosterone level and up-regulated STAR, CYP17A1, and 17β-HSD3 expressions. Co-treatment with PKA inhibitor H-89 or PKC inhibitor U73122 reversed PTHrP-mediated increase of testosterone production in vitro. Intratesticular injection of PTHrP (100 ng/testis) into the Leydig cell-depleted testis from post-EDS day 7 to 21 significantly increased serum testosterone level, up-regulated LHCGR, SCARB1, CYP11A1, 11β-HSD1, and CYP17A1 expressions. It also enlarged Leydig cell size without affecting PCNA-labeled Leydig cell number. This indicates that PTHrP promotes stem Leydig cell differentiation. PTHrP in vivo increased CREB and p-CREB levels, suggesting that PTHrP acts via a PKA-CREB signaling pathway. In conclusion, PTHrP stimulates stem Leydig cell differentiation without affecting its proliferation, showing its novel action and mechanism on rat stem Leydig cell development.


BioMed Research International | 2017

Triclocarban and Triclosan Inhibit Human Aromatase via Different Mechanisms

Huitao Li; Yu Zhao; Lanlan Chen; Ying Su; Xiaoheng Li; Lixu Jin; Ren-Shan Ge

Human aromatase (CYP19A1) is an important enzyme, which produces estrogen from androgen for maintaining the female reproductive function and pregnancy. Triclocarban and triclosan are antimicrobial chemicals added to personal care, household, and industrial products. They could be endocrine disruptors and may disrupt human CYP19A1 activity. In the present study, we investigated the effects of triclocarban and triclosan on estradiol production and human CYP19A1 activity in JEG-3 cells. Triclocarban and triclosan reduced estradiol production in JEG-3 cells. Triclocarban and triclosan inhibited human CYP19A1 with IC50 values of 15.81 and 6.26 μM, respectively. Triclosan competitively inhibited CYP19A1, while triclocarban noncompetitively inhibited this enzyme. Docking study showed that triclosan bound to the steroid-binding pocket of CYP19A1, while triclocarban was off this target, suggesting a different mechanism. In conclusion, triclocarban and triclosan are inhibitors of human CYP19A1.


Toxicology Mechanisms and Methods | 2018

Ziram inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase

Ying Su; Huitao Li; Xiaomin Chen; Yiyan Wang; Xiaoheng Li; Jianliang Sun; Ren-Shan Ge

Abstract The neurotoxicity of ziram is largely unknown. In this study, we investigated the direct inhibitions of ziram on rat neurosteroid synthetic and metabolizing enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C14), and retinol dehydrogenase 2 (RDH2). Rat SRD5A1, AKR1C14, and RDH2 were cloned and transiently expressed in COS1 cells, and the effects of ziram on these enzymes were measured. Ziram inhibited rat SRD5A1 and AKR1C14 with IC50 values of 1.556 ± 0.078 and 1.017 ± 0.072 μM, respectively, when 1000 nM steroid substrates were used. Ziram weakly inhibited RDH2 at 100 μM, when androstanediol (1000 nM) was used. Ziram competitively inhibited SRD5A1 and non-competitively inhibited AKR1C14 when steroid substrates were used. Docking study showed that ziram bound to NADPH-binding pocket of AKR1C14. In conclusion, our results demonstrated that ziram inhibited SRD5A1 and AKR1C14 activities, thus possibly interfering with neurosteroid production in rats.


Toxicology | 2018

In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development

Guo-Xin Hu; Junwei Li; Yuanyuan Shan; Xiaoheng Li; Qiqi Zhu; Huitao Li; Yiyan Wang; Xiaofang Chen; Qingquan Lian; Ren-Shan Ge

Phthalate diesters, including di-(2-ethylhexyl) phthalate (DEHP) and diethyl phthalate (DEP), are chemicals to which humans are ubiquitously exposed. Humans are exposed simultaneously to multiple environmental chemicals, including DEHP and DEP. There is little information available about how each chemical may interact to each other if they were exposed at same time. The present study investigated effects of the combinational exposure of rats to DEP and DEHP on fetal Leydig cell development. The results showed that the gestational (GD12-20) exposure of DEP + DEHP resulted in synergistic and/or dose-additive effects on the development of fetal Leydig cell. The lowest observed adverse-effect levels (LOAEL) for fetal Leydig cell (aggregation and cell size), and StAR expressions were of 10 mg/kg and, lower than when these chemicals were exposed alone. Also, mathematical modeling the response curves supports the dose-addition model over integrated-addition model. Overall, these data demonstrate that individual phthalate with a similar mechanism of action can elicit cumulative, dose additive, and sometimes synergistic, effects on the development of male reproductive system when administered as a mixture.


Environmental Pollution | 2018

Lambda-cyhalothrin delays pubertal Leydig cell development in rats

Huitao Li; Yinghui Fang; Chaobo Ni; Xiuxiu Chen; Jiaying Mo; Yao Lv; Yong Chen; Xianwu Chen; Qingquan Lian; Ren-Shan Ge

Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide and is expected to cause deleterious effects on the male reproductive system. However, the effects of LCT on Leydig cell development during puberty are unclear. The current study addressed these effects. Twenty-eight-day-old male Sprague Dawley rats orally received LCT (0, 0.25, 0.5 or 1 mg/kg body weight/day) for 30 days. The levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, Leydig cell number, and its specific gene and protein expression were determined. LCT exposure lowered serum testosterone levels at doses of 0.5 and 1 mg/kg and luteinizing hormone levels at a dose of 1 mg/kg, but increased follicle-stimulating hormone levels at doses of 0.5 and 1 mg/kg. LCT lowered Star and Hsd3b1 mRNA or their protein levels at a dose of 1 mg/kg. Immature Leydig cells were purified from pubertal rats and treated with different concentrations of LCT for 24 h and medium androgen levels, Leydig cell mRNA and protein levels, the mitochondrial membrane potential (△Ψm), and the apoptotic rate of immature Leydig cells were investigated. LCT inhibited androgen production at 5 μM and downregulated Scarb1 at 0.05 μM, Hsd3b1 and Hsd11b1 at 0.5 μM, and Cyp11a1 at 5 μM. LCT also decreased △Ψm at 0.5 and 50 μM. In conclusion, LCT can influence the function of Leydig cells.


Toxicology | 2017

Prenatal exposure to di-n-butyl phthalate disrupts the development of adult Leydig cells in male rats during puberty

Xiaomin Chen; Linxi Li; Huitao Li; Hongguo Guan; Yaoyao Dong; Xiaoheng Li; Qiufan Wang; Qingquan Lian; Guo-Xin Hu; Ren-Shan Ge

Fetal exposure to di-n-butyl phthalate (DBP) causes the adult disease such as lower testosterone production and infertility. However, the mechanism is still unknown. The objective of the present study is to determine how DBP affects the involution of fetal Leydig cells during the neonatal period and how this event causes the delayed development of the adult Leydig cells during puberty. The pregnant Sprague Dawley dams were randomly divided into 3 groups and were gavaged with 0 (corn oil, the vehicle control), 100 or 500mg/kg DBP from gestational day 12 (G12) to G21. The blood and testes were collected from male pups on postnatal day 4 (P4), P7, P14, P21, P28, and P56. Serum testosterone concentrations were assessed and the mRNA levels of Leydig cell- or gonadotroph cell-specific genes were measured. Prenatal exposure to DBP caused the aggregation of fetal Leydig cells, which slowly disappeared when compared to the control. This effect was associated with the reduction of testicular testosterone secretion and down-regulation of the mRNA levels of Leydig cell biomarkers including Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1, and Hsd17b3 as well as the gonadotroph biomarkers including Lhb and Gnrhr. In conclusion, we demonstrated that the increased aggregation of fetal Leydig cells by DBP delayed fetal Leydig cell involution, thus leading to the disrupted development of the adult Leydig cells.


Molecular and Cellular Endocrinology | 2017

Interleukin 6 inhibits the differentiation of rat stem Leydig cells

Yiyan Wang; Lanlan Chen; Lubin Xie; Linchao Li; Xiaoheng Li; Huitao Li; Jianpeng Liu; Xianwu Chen; Baiping Mao; Tiantian Song; Qingquan Lian; Ren-Shan Ge


Chemico-Biological Interactions | 2017

Effects of perfluoroalkyl substances on neurosteroid synthetic enzymes in the rat

Ren-ai Xu; Qiuxia Shen; Senlin Li; Xiaojun Li; Huitao Li; Yao Lü; Qingquan Lian; Ren-Shan Ge

Collaboration


Dive into the Huitao Li's collaboration.

Top Co-Authors

Avatar

Ren-Shan Ge

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoheng Li

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Jianpeng Liu

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Li

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Yiyan Wang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Baiping Mao

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Guo-Xin Hu

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Lanlan Chen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Xianwu Chen

Wenzhou Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge