Huiwen W. Zhao
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiwen W. Zhao.
PLOS ONE | 2007
Huiwen W. Zhao; Dan Zhou; Victor Nizet; Gabriel G. Haddad
Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very high O2 environments (90% O2), a lethal condition to naïve flies. We demonstrated that tolerance to hyperoxia was heritable in these flies and that these hyperoxia-selected flies exhibited phenotypic differences from naïve flies, such as a larger body size and increased weight by 20%. Gene expression profiling revealed that 227 genes were significantly altered in expression and two third of these genes were down-regulated. Using a mutant screen strategy, we studied the role of some altered genes (up- or down-regulated in the microarrays) by testing the survival of available corresponding P-element or UAS construct lines under hyperoxic conditions. We report that down-regulation of several candidate genes including Tropomyosin 1, Glycerol 3 phosphate dehydrogenase, CG33129, and UGP as well as up-regulation of Diptericin and Attacin conferred tolerance to severe hyperoxia. In conclusion, we identified several genes that were not only altered in hyperoxia-selected flies but we also prove that these play an important role in hyperoxia survival. Thus our study provides a molecular basis for understanding the mechanisms of hyperoxia tolerance.
American Journal of Human Genetics | 2013
Dan Zhou; Nitin Udpa; Roy Ronen; Tsering Stobdan; Junbin Liang; Otto Appenzeller; Huiwen W. Zhao; Yi Yin; Yuanping Du; Lixia Guo; Rui Cao; Yu Wang; Xin Jin; Chen Huang; Wenlong Jia; Dandan Cao; Guangwu Guo; Jorge L. Gamboa; Francisco C. Villafuerte; David Callacondo; Jin Xue; Siqi Liu; Kelly A. Frazer; Yingrui Li; Vineet Bafna; Gabriel G. Haddad
The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcriptional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation to high altitudes and identifies potentially targetable mechanisms for CMS treatment.
PLOS ONE | 2012
Sameh S. Ali; Mary Hsiao; Huiwen W. Zhao; Laura L. Dugan; Gabriel G. Haddad; Dan Zhou
Through long-term laboratory selection, we have generated a Drosophila melanogaster population that tolerates severe, normally lethal, level of hypoxia. This strain lives perpetually under severe hypoxic conditions (4% O2). In order to shed light on the mechanisms involved in this adaptation, we studied the respiratory function of isolated mitochondria from the thorax of hypoxia-adapted flies (AF) using polarographic oxygen consumption while monitoring superoxide generation by electron paramagnetic resonance (EPR) techniques. AF mitochondria exhibited a significant 30% decrease in respiratory rate during state 3, while enhancing the resting respiratory rate during State 4-oligo by 220%. The activity of individual electron transport complexes I, II and III were 107%, 65%, and 120% in AF mitochondria as compared to those isolated from control flies. The sharp decrease in complex II activity and modest increase in complexes I and III resulted in >60% reduction in superoxide leakage from AF mitochondria during both NAD+-linked state 3 and State 4-oligo respirations. These results provide evidence that flies with mitochondria exhibiting decreased succinate dehydrogenase activity and reduced superoxide leakage give flies an advantage for survival in long-term hypoxia.
Journal of Biological Chemistry | 2011
Huiwen W. Zhao; Dan Zhou; Gabriel G. Haddad
It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMPs) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild-type flies to survive much better in hyperoxia. In this study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with AMP overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS levels after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that 1) AMPs play an important role in tolerance to oxidant stress, 2) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and 3) this change in redox balance plays an important role in survival in hyperoxia.
Placenta | 2011
Huiwen W. Zhao; Gabriel G. Haddad
Oxygen (O(2)) is essential for aerobic life; however, the level of O(2), whether too low (hypoxia) or too high (hyperoxia), can induce oxidative injury and increase morbidity and mortality. Disruption of O(2) homeostasis represents a major aspect of many disease etiologies and pathobiology. In the past, our laboratory has been using Drosophila melanogaster to investigate the cellular and molecular aspects of the response to hypoxia and oxidative stress. There are several advantages for using Drosophila as a model system, the most important one being an evolutionary conservation of genetic and signaling pathways from Drosophila to mammals. As a proof of this concept, we have shown that we can substantially improve the tolerance of human cells in culture by transfecting these cells with particular Drosophila genes. In this review, we summarize the recent findings from our laboratory using Drosophila as a model system to investigate the genetic basis of hypoxia/hyperoxia tolerance. We have done microarray studies and identified several oxidative stress resistance genes that play an important role in individual paradigms such as constant or intermittent hypoxia, short term (days) or long term (generations) hypoxia/hyperoxia. Our studies provide evidence that a pattern of oxidative stress is specific in inducing a gene expression profile which, in turn, plays an important role in modulating the phenotype. To improve our understanding of oxidative and hypoxic stress as well as its associated diseases, multi-disciplinary approaches are necessary and critical in the study of complicated issues in systems biology.
PLOS ONE | 2013
Songyue Yin; Jin Xue; Haidan Sun; Bo Wen; Q. Wang; Guy A. Perkins; Huiwen W. Zhao; Mark H. Ellisman; Yu-hsin Hsiao; Liang Yin; Yingying Xie; Guixue Hou; Jin Zi; Liang Lin; Gabriel G. Haddad; Dan Zhou; Siqi Liu
Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively), examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ). A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional) in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.
Antioxidants & Redox Signaling | 2012
Huiwen W. Zhao; Sameh S. Ali; Gabriel G. Haddad
Prolonged hyperoxia exposure generates excessive reactive oxygen species (ROS) and potentially leads to oxidative injury in every organ. We have previously generated Drosophila melanogaster flies that tolerate extreme oxidative stress (90%-95% O₂), a lethal condition to naive flies, through a long-term laboratory selection. We found that hyperoxia-selected (S(O2)A) flies had a significantly longer lifespan in hyperoxia and paraquat-induced oxidative stress. Prolonged hyperoxia exposure induced a significant ROS accumulation and an increased expression of oxidative stress markers, including lipid peroxidation and protein carbonyl contents in control flies, but not in S(O2)A flies. Enzymatic assays revealed that antioxidant enzyme activity in S(O2)A flies was similar to that in control flies. However, in isolated mitochondria and using electron paramagnetic resonance, we observed that S(O2)A flies displayed a decreased superoxide yield during state 3 respiration as compared to control flies and that the activity of electron transport chain complex I and III was also inhibited in S(O2)A flies. Our observations lead to the hypothesis that decreased complex activity results in a decreased ROS production, which might be a major potential adaptive mechanism of hyperoxia tolerance.
Journal of Experimental Medicine | 2016
Priti Azad; Huiwen W. Zhao; Pedro Cabrales; Roy Ronen; Dan Zhou; Orit Poulsen; Otto Appenzeller; Yu Hsin Hsiao; Vineet Bafna; Gabriel G. Haddad
Azad and collaborators propose that Senp1 drives excessive erythropoiesis in high-altitude Andean dwellers suffering from chronic mountain sickness.
Neuroscience | 2015
Huiwen W. Zhao; Xiang Q. Gu; Thanathom Chailangkarn; Guy A. Perkins; David Callacondo; Otto Appenzeller; Orit Poulsen; Dan Zhou; Alysson R. Muotri; Gabriel G. Haddad
Neuroscience | 2016
Hang Yao; Priti Azad; Huiwen W. Zhao; Juan Wang; Orit Poulsen; Beatriz C. Freitas; Alysson R. Muotri; Gabriel G. Haddad