Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huiyan Huang is active.

Publication


Featured researches published by Huiyan Huang.


Developmental Cell | 2011

piRNA-Associated Germline Nuage Formation and Spermatogenesis Require MitoPLD Profusogenic Mitochondrial-Surface Lipid Signaling

Huiyan Huang; Qun Gao; Xiaoxue Peng; Seok-Yong Choi; Krishna Sarma; Hongmei Ren; Andrew J. Morris; Michael A. Frohman

The mammalian Phospholipase D MitoPLD facilitates mitochondrial fusion by generating the signaling lipid phosphatidic acid (PA). The Drosophila MitoPLD homolog Zucchini (Zuc), a proposed cytoplasmic nuclease, is required for piRNA generation, a critical event in germline development. We show that Zuc localizes to mitochondria and has MitoPLD-like activity. Conversely, MitoPLD(-/-) mice exhibit the meiotic arrest, DNA damage, and male sterility characteristic of mice lacking piRNAs. The primary function of MitoPLD seems to be the generation of mitochondrial-surface PA. This PA in turn recruits the phosphatase Lipin 1, which converts PA to diacylglycerol and promotes mitochondrial fission, suggesting a mechanism for mitochondrial morphology homeostasis. MitoPLD and Lipin 1 have opposing effects on mitochondria length and on intermitochondrial cement (nuage), a structure found between aggregated mitochondria that is implicated in piRNA generation. We propose that mitochondrial-surface PA generated by MitoPLD/Zuc recruits or activates nuage components critical for piRNA production.


Biochimica et Biophysica Acta | 2009

Lipid signaling on the mitochondrial surface

Huiyan Huang; Michael A. Frohman

Regulated production and elimination of the signaling lipids phosphatidic acid (PA), diacylglycerol (DAG), and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) creates a complex and interconnected signaling network that modulates a wide variety of eukaryotic cell biological events. PA production at the plasma membrane and on trafficking membrane organelles by classical Phospholipase D (PLD) through the hydrolysis of phosphatidylcholine (PC) has been studied widely. In this chapter, we review a newly identified, non-canonical member of the PLD superfamily, MitoPLD, which localizes to the mitochondrial surface and plays a role in mitochondrial fusion via the hydrolysis of cardiolipin (CL) to generate PA. The role of PA in facilitating the mitochondrial fusion event carried out by proteins known as Mitofusins is intriguing in light of the role classic PLD-generated PA plays in facilitating SNARE-mediated fusion of secretory membrane vesicles into the plasma membrane. In addition, however, PA on the mitochondrial surface may also trigger a signaling cascade that elevates DAG, leading to downstream events that affect mitochondrial fission and energy production. PA production on the mitochondrial surface may also stimulate local production of PI4,5P(2) to facilitate mitochondrial fission and subcellular trafficking or facilitate Ca(2+) influx.


Molecular Biology of the Cell | 2010

A Phosphatidic Acid Binding/Nuclear Localization Motif Determines Lipin1 Function in Lipid Metabolism and Adipogenesis

Hongmei Ren; Lorenzo Federico; Huiyan Huang; Manjula Sunkara; Tracy Drennan; Michael A. Frohman; Susan S. Smyth; Andrew J. Morris

A polybasic motif in the metabolic regulator lipin1 is both a membrane anchor and a nuclear localization sequence required for lipin1 function in phospholipid metabolism and adipogenesis.


BMC Biology | 2010

A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators

Astrid C. Schauss; Huiyan Huang; Seok-Yong Choi; Liqun Xu; Sébastien Soubeyrand; Patricia Bilodeau; Rodolfo Zunino; Peter Rippstein; Michael A. Frohman; Heidi M. McBride

BackgroundMitochondria are highly dynamic organelles whose morphology and position within the cell is tightly coupled to metabolic function. There is a limited list of essential proteins that regulate mitochondrial morphology and the mechanisms that govern mitochondrial dynamics are poorly understood. However, recent evidence indicates that the core machinery that governs mitochondrial dynamics is linked within complex intracellular signalling cascades, including apoptotic pathways, cell cycle transitions and nuclear factor kappa B activation. Given the emerging importance of mitochondrial plasticity in cell signalling pathways and metabolism, it is essential that we develop tools to quantitatively analyse the processes of fission and fusion. In terms of mitochondrial fusion, the field currently relies upon on semi-quantitative assays which, even under optimal conditions, are labour-intensive, low-throughput and require complex imaging techniques.ResultsIn order to overcome these technical limitations, we have developed a new, highly quantitative cell-free assay for mitochondrial fusion in mammalian cells. This assay system has allowed us to establish the energetic requirements for mitochondrial fusion. In addition, our data reveal a dependence on active protein phosphorylation for mitochondrial fusion, confirming emerging evidence that mitochondrial fusion is tightly integrated within the global cellular response to signaling events. Indeed, we have shown that cytosol derived from cells stimulated with different triggers either enhance or inhibit the cell-free fusion reaction.ConclusionsThe adaptation of this system to high-throughput analysis will provide an unprecedented opportunity to identify and characterize novel regulatory factors. In addition, it provides a framework for a detailed mechanistic analysis of the process of mitochondrial fusion and the various axis of regulation that impinge upon this process in a wide range of cellular conditions.See Commentary: http://www.biomedcentral.com/1741-7007/8/99


Mitochondrion | 2010

A quantitative assay for mitochondrial fusion using Renilla luciferase complementation

Huiyan Huang; Seok-Yong Choi; Michael A. Frohman

Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression.


Genetics | 2016

A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-Like Quiescence in Caenorhabditis elegans

Amanda L. Fry; Jocelyn T. Laboy; Huiyan Huang; Anne C. Hart; Kenneth R. Norman

Sleep is evolutionarily conserved and required for organism homeostasis and survival. Despite this importance, the molecular and cellular mechanisms underlying sleep are not well understood. Caenorhabditis elegans exhibits sleep-like behavioral quiescence and thus provides a valuable, simple model system for the study of cellular and molecular regulators of this process. In C. elegans, epidermal growth factor receptor (EGFR) signaling is required in the neurosecretory neuron ALA to promote sleep-like behavioral quiescence after cellular stress. We describe a novel role for VAV-1, a conserved guanine nucleotide exchange factor (GEF) for Rho-family GTPases, in regulation of sleep-like behavioral quiescence. VAV-1, in a GEF-dependent manner, acts in ALA to suppress locomotion and feeding during sleep-like behavioral quiescence in response to cellular stress. Additionally, VAV-1 activity is required for EGF-induced sleep-like quiescence and normal levels of EGFR and secretory dense core vesicles in ALA. Importantly, the role of VAV-1 in promoting cellular stress–induced behavioral quiescence is vital for organism health because VAV-1 is required for normal survival after cellular stress.


Methods in Cell Biology | 2012

Visualizing Mitochondrial Lipids and Fusion Events in Mammalian Cells

Huiyan Huang; Michael A. Frohman

Mitochondria are dynamic organelles that frequently undergo fusion and fission, the balance of which is critical for proper cellular functioning and viability. Most studies on mitochondrial fusion and fission mechanisms have focused on proteins thought to physically mediate the events. However, dynamic changes in membrane phospholipids also play roles in facilitating the fusion and fission events. This chapter will review the importance of lipids in mitochondrial dynamics and some of the methods that can be used to study the function of lipids in mitochondrial fusion and fission.


BMC Neuroscience | 2018

Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

Heather L. Bennett; Yulia Khoruzhik; Dustin J. Hayden; Huiyan Huang; Jarred Sanders; Melissa B. Walsh; David Biron; Anne C. Hart

BackgroundSleep deprivation impairs learning, causes stress, and can lead to death. Notch and JNK-1 pathways impact C. elegans sleep in complex ways; these have been hypothesized to involve compensatory sleep. C. elegans DAF-16, a FoxO transcription factor, is required for homeostatic response to decreased sleep and DAF-16 loss decreases survival after sleep bout deprivation. Here, we investigate connections between these pathways and the requirement for sleep after mechanical stress.ResultsReduced function of Notch ligand LAG-2 or JNK-1 kinase resulted in increased time in sleep bouts during development. These animals were inappropriately easy to arouse using sensory stimulation, but only during sleep bouts. This constellation of defects suggested that poor quality sleep bouts in these animals might activate homeostatic mechanisms, driving compensatory increased sleep bouts. Testing this hypothesis, we found that DAF-16 FoxO function was required for increased sleep bouts in animals with defective lag-2 and jnk-1, as loss of daf-16 reduced sleep bouts back to normal levels. However, loss of daf-16 did not suppress arousal thresholds defects. Where DAF-16 function was required differed; in lag-2 and jnk-1 animals, daf-16 function was required in neurons or muscles, respectively, suggesting that disparate tissues can drive a coordinated response to sleep need. Sleep deprivation due to mechanical stimulation can cause death in many species, including C. elegans, suggesting that sleep is essential. We found that loss of sleep bouts in C. elegans due to genetic manipulation did not impact their survival, even in animals lacking DAF-16 function. However, we found that sleep bout deprivation was often fatal when combined with the concurrent stress of mechanical stimulation.ConclusionsTogether, these results in C. elegans confirm that Notch and JNK-1 signaling are required to achieve normal sleep depth, suggest that DAF-16 is required for increased sleep bouts when signaling decreases, and that failure to enter sleep bouts is not sufficient to cause death in C. elegans, unless paired with concurrent mechanical stress. These results suggest that mechanical stress may directly contribute to death observed in previous studies of sleep deprivation and/or that sleep bouts have a uniquely restorative role in C. elegans sleep.


Sleep | 2017

Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep

Huiyan Huang; Yong Zhu; Melissa N. Eliot; Valerie S. Knopik; John E. McGeary; Mary A. Carskadon; Anne C. Hart

Study Objectives We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. Methods We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Results Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Conclusions Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species.


G3: Genes, Genomes, Genetics | 2017

Genome-Wide Screen for Genes Involved in Caenorhabditis elegans Developmentally Timed Sleep

Huiyan Huang; Chen-Tseh Zhu; Lukas L. Skuja; Dustin J. Hayden; Anne C. Hart

In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep.

Collaboration


Dive into the Huiyan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seok-Yong Choi

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongmei Ren

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge