Huiyin Tu
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiyin Tu.
European Journal of Pharmacology | 2011
T.P. Tran; Huiyin Tu; Iraklis I. Pipinos; Robert L. Muelleman; Hassan Albadawi; Yu Long Li
Although arterial limb tourniquet is one of the first-line treatments to prevent exsanguinating hemorrhage in both civilian pre-hospital and battlefield casualty care, prolonged application of a limb tourniquet can lead to serious ischemia-reperfusion injury. However, the underlying pathomechanisms of tourniquet-induced ischemia-reperfusion injury are still poorly understood. Using a murine model of acute limb ischemia-reperfusion, we investigated if acute limb ischemia-reperfusion injury is mediated by superoxide overproduction and mitochondrial dysfunction. Hind limbs of C57/BL6 mice were subjected to 3h ischemia and 4h reperfusion via placement and release of a rubber tourniquet at the greater trochanter. Approximately 40% of the gastrocnemius muscle suffered infarction in this model. Activities of mitochondrial electron transport chain complexes including complex I, II, III, and IV in the gastrocnemius muscle were decreased in the ischemia-reperfusion group compared to sham. Superoxide production was increased while activity of manganese superoxide dismutase (MnSOD, the mitochondria-targeted SOD isoform) was decreased in the ischemia-reperfusion group compared to the sham group. Pretreatment with tempol (a SOD mimetic, 50mg/kg) or co-enzyme Q(10) (50mg/kg) not only decreased the superoxide production, but also reduced the infarct size and normalized mitochondrial dysfunction in the gastrocnemius muscle. Our results suggest that tourniquet-induced skeletal muscle ischemia-reperfusion injuries including infarct size and mitochondrial dysfunction may be mediated via superoxide overproduction and reduced antioxidant activity. In the future, this murine ischemia-reperfusion model can be adapted to mechanistically evaluate anti-ischemic molecules in tourniquet-induced skeletal muscle injury.
Neuroscience | 2010
Huiyin Tu; Libin Zhang; T.P. Tran; Robert L. Muelleman; Yu-Long Li
Vagal afferent neurons, serving as the primary afferent limb of the parasympathetic reflex, could be involved in diabetic autonomic neuropathy. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in the vagal afferent neurons and play an important role in determining cell membrane excitation. In the present study, the protein expression and the electrophysiological characteristics of HCN channels were investigated in nodose ganglion (NG) afferent neurons (A-fiber and C-fiber neurons) from sham and streptozotocin (STZ)-induced diabetic rats. In the sham NG, HCN1, HCN3, and HCN4 were expressed in the A-fiber neurons; and HCN2, HCN3, and HCN4 were expressed in the C-fiber neurons. Compared to the sham NG neurons, diabetes induced the expression of HCN2 in the A-fiber neurons besides overexpression of HCN1 and HCN3; and enhanced the expression of HCN2 and HCN3 in C-fiber neurons. In addition, whole-cell patch-clamp data revealed diabetes also increased HCN currents in A-fiber and C-fiber neurons. However, we found that diabetes did not alter the total nodose afferent neuron number and the ratio of A-fiber/C-fiber neurons. These results indicate that diabetes induces the overexpression of HCN channels and the electrophysiological changes of HCN currents in the A- and C-fiber nodose neurons, which might contribute to the diabetes-induced alteration of cell excitability in the vagal afferent neurons.
Journal of Neuroscience Research | 2010
Huiyin Tu; Libin Zhang; T.P. Tran; Robert L. Muelleman; Yu Long Li
Voltage‐gated sodium (Nav) channels are responsible for initiation and propagation of action potential in the neurons. To explore the mechanisms of chronic heart failure (CHF)‐induced baroreflex dysfunction, we measured the expression and current density of Nav channel subunits (Nav1.7, Nav1.8, and Nav1.9) in the aortic baroreceptor neurons and investigated the role of Nav channels in aortic baroreceptor neuron excitability and baroreflex sensitivity in sham and CHF rats. CHF was induced by left coronary artery ligation. The development of CHF (6–8 weeks after the coronary ligation) was confirmed by hemodynamic and morphological characteristics. Immunofluorescent data indicated that Nav1.7 was expressed in A‐type (myelinated) and C‐type (unmyelinated) nodose neurons, but Nav1.8 and Nav1.9 were expressed only in C‐type nodose neurons. Real‐time RT‐PCR and Western blot data showed that CHF reduced mRNA and protein expression levels of Nav channels in nodose neurons. In addition, using the whole‐cell patch‐clamp technique, we found that Nav current density and cell excitability of the aortic baroreceptor neurons were lower in CHF rats than that in sham rats. Aortic baroreflex sensitivity was blunted in anesthetized CHF rats, compared with that in sham rats. Furthermore, Nav channel activator (rATX II, 100 nM) significantly enhanced Nav current density and cell excitability of aortic baroreceptor neurons and improved aortic baroreflex sensitivity in CHF rats. These results suggest that reduced expression and activation of the Nav channels are involved in the attenuation of baroreceptor neuron excitability, which subsequently contributes to the impairment of baroreflex in CHF state.
PLOS ONE | 2012
T.P. Tran; Huiyin Tu; Jinxu Liu; Robert L. Muelleman; Yu Long Li
Our previous study has reported that superoxide mediates ischemia-reperfusion (IR)-induced necrosis in mouse skeletal muscle. However, it remains poorly understood whether IR induces apoptosis and what factors are involved in IR-induced apoptosis in skeletal muscle. Using a murine model of tourniquet-induced hindlimb IR, we investigated the relationship between mitochondrial dysfunction and apoptosis in skeletal muscle. Hindlimbs of C57/BL6 mice were subjected to 3 h ischemia and 4 h reperfusion via placement and release of a rubber tourniquet at the greater trochanter. Compared to sham treatment, tourniquet-induced IR significantly elevated mitochondria-derived superoxide production, activated opening of mitochondrial permeability transition pore (mPTP), and caused apoptosis in the gastrocnemius muscles. Pretreatment with a superoxide dismutase mimetic (tempol, 50 mg/kg) or a mitochondrial antioxidant (co-enzyme Q10, 50 mg/kg) not only decreased mitochondria-derived superoxide production, but also inhibited mPTP opening and apoptosis in the IR gastrocnemius muscles. Additionally, an inhibitor of mPTP (cyclosporine A, 50 mg/kg) also inhibited both mPTP opening and apoptosis in the IR gastrocnemius muscles. These results suggest that mitochondria-derived superoxide overproduction triggers the mPTP opening and subsequently causes apoptosis in tourniquet-induced hindlimb IR.
American Journal of Physiology-cell Physiology | 2012
Jinxu Liu; Huiyin Tu; Hong Zheng; Libin Zhang; T.P. Tran; Robert L. Muelleman; Yu Long Li
Clinical study has demonstrated that patients with type 2 diabetes with attenuated arterial baroreflex have higher mortality rate compared with those without arterial baroreflex dysfunction. As a final pathway for the neural control of the cardiac function, functional changes of intracardiac ganglion (ICG) neurons might be involved in the attenuated arterial baroreflex in the type 2 diabetes mellitus (T2DM). Therefore, we measured the ICG neuron excitability and Ca(2+) channels in the sham and T2DM rats. T2DM was induced by a combination of both high-fat diet and low-dose streptozotocin (STZ, 30 mg/kg ip) injection. After 12-14 wk of the above treatment, the T2DM rats presented hyperglycemia, hyperlipidemia, and insulin resistance but no hyperinsulinemia, which closely mimicked the clinical features of the patients with T2DM. Data from immunofluorescence staining showed that L, N, P/Q, and R types of Ca(2+) channels were expressed in the ICG neurons, but only protein expression of N-type Ca(2+) channels was decreased in the ICG neurons from T2DM rats. Using whole cell patch-clamp technique, we found that T2DM significantly reduced the Ca(2+) currents and cell excitability in the ICG neurons. ω-Conotoxin GVIA (a specific N-type Ca(2+) channel blocker, 1 μM) lowered the Ca(2+) currents and cell excitability toward the same level in sham and T2DM rats. These results indicate that the decreased N-type Ca(2+) channels contribute to the suppressed ICG neuron excitability in T2DM rats. From this study, we think high-fat diet/STZ injection-induced T2DM might be an appropriate animal model to test the cellular and molecular mechanisms of cardiovascular autonomic dysfunction.
American Journal of Physiology-cell Physiology | 2014
Huiyin Tu; Jinxu Liu; Dongze Zhang; Hong Zheng; Kaushik P. Patel; Kurtis G. Cornish; Wei Zhong Wang; Robert L. Muelleman; Yu Long Li
Chronic heart failure (CHF) is characterized by decreased cardiac parasympathetic and increased cardiac sympathetic nerve activity. This autonomic imbalance increases the risk of arrhythmias and sudden death in patients with CHF. We hypothesized that the molecular and cellular alterations of cardiac postganglionic parasympathetic (CPP) neurons located in the intracardiac ganglia and sympathetic (CPS) neurons located in the stellate ganglia (SG) possibly link to the cardiac autonomic imbalance in CHF. Rat CHF was induced by left coronary artery ligation. Single-cell real-time PCR and immunofluorescent data showed that L (Ca(v)1.2 and Ca(v)1.3), P/Q (Ca(v)2.1), N (Ca(v)2.2), and R (Ca(v)2.3) types of Ca2+ channels were expressed in CPP and CPS neurons, but CHF decreased the mRNA and protein expression of only the N-type Ca2+ channels in CPP neurons, and it did not affect mRNA and protein expression of all Ca2+ channel subtypes in the CPS neurons. Patch-clamp recording confirmed that CHF reduced N-type Ca2+ currents and cell excitability in the CPP neurons and enhanced N-type Ca2+ currents and cell excitability in the CPS neurons. N-type Ca2+ channel blocker (1 μM ω-conotoxin GVIA) lowered Ca2+ currents and cell excitability in the CPP and CPS neurons from sham-operated and CHF rats. These results suggest that CHF reduces the N-type Ca2+ channel currents and cell excitability in the CPP neurons and enhances the N-type Ca2+ currents and cell excitability in the CPS neurons, which may contribute to the cardiac autonomic imbalance in CHF.
Journal of Neurophysiology | 2012
Huiyin Tu; Jinxu Liu; Zhen Zhu; Libin Zhang; Iraklis I. Pipinos; Yu Long Li
Our previous study has shown that chronic heart failure (CHF) reduces expression and activation of voltage-gated sodium (Na(v)) channels in baroreceptor neurons, which are involved in the blunted baroreceptor neuron excitability and contribute to the impairment of baroreflex in the CHF state. The present study examined the role of mitochondria-derived superoxide in the reduced Na(v) channel function in coronary artery ligation-induced CHF rats. CHF decreased the protein expression and activity of mitochondrial complex enzymes and manganese SOD (MnSOD) and elevated the mitochondria-derived superoxide level in the nodose neurons compared with those in sham nodose neurons. Adenoviral MnSOD (Ad.MnSOD) gene transfection (50 multiplicity of infection) into the nodose neurons normalized the MnSOD expression and reduced the elevation of mitochondrial superoxide in the nodose neurons from CHF rats. Ad.MnSOD also partially reversed the reduced protein expression and current density of the Na(v) channels and the suppressed cell excitability (the number of action potential and the current threshold for inducing action potential) in aortic baroreceptor neurons from CHF rats. Data from the present study indicate that mitochondrial dysfunction, including decreased protein expression and activity of mitochondrial complex enzymes and MnSOD and elevated mitochondria-derived superoxide, contributes to the reduced Na(v) channel activation and cell excitability in the aortic baroreceptor neurons in CHF rats.
Hypertension | 2014
Dongze Zhang; Jinxu Liu; Huiyin Tu; Robert L. Muelleman; Kurtis G. Cornish; Yu Long Li
Arterial baroreflex sensitivity is attenuated in chronic heart failure (CHF) state, which is associated with cardiac arrhythmias and sudden cardiac death in patients with CHF. Our previous study showed that CHF-induced sodium channel dysfunction in the baroreceptor neurons was involved in the blunted baroreflex sensitivity in CHF rats. Mitochondria-derived superoxide overproduction decreased expression and activation of the sodium channels in the baroreceptor neurons from CHF rats. However, the molecular mechanisms responsible for the sodium channel dysfunction in the baroreceptor neurons from CHF rats remain unknown. We tested the involvement of nuclear factor &kgr;B (NF&kgr;B) in the sodium channel dysfunction and evaluated the effects of in vivo transfection of manganese superoxide dismutase gene and NF&kgr;B shRNA on the baroreflex function in CHF rats. CHF was developed at 6 to 8 weeks after left coronary artery ligation in adult rats. Western blot and chromatin immunoprecipitation data showed that phosphorylated NF&kgr;B p65 and ability of NF&kgr;B p65 binding to the sodium channel promoter were increased in the nodose ganglia from CHF rats. In vivo transfection of adenoviral manganese superoxide dismutase gene or lentiviral NF&kgr;B p65 shRNA into the nodose ganglia partially reversed CHF-reduced sodium channel expression and cell excitability in the baroreceptor neurons and improved CHF-blunted arterial baroreflex sensitivity. Additionally, transfection of adenoviral manganese superoxide dismutase also inhibited the augmentation of phosphorylated NF&kgr;B p65 in the nodose neurons from CHF rats. The present study suggests that superoxide–NF&kgr;B signaling contributes to CHF-induced baroreceptor dysfunction and resultant impairment of baroreflex function.
BMC Neuroscience | 2012
Jinxu Liu; Huiyin Tu; Dongze Zhang; Hong Zheng; Yu Long Li
BackgroundThe generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells.ResultsWhole-cell patch-clamp results showed that differentiation (9 days) didn’t change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential.ConclusionDifferentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.
Biochemical and Biophysical Research Communications | 2012
Jinxu Liu; Huiyin Tu; Dongze Zhang; Yu Long Li
Based on the characteristics of differentiated NG108-15 cells (cell membrane excitability, acetylcholine release, and activities of choline acetyltransferase and acetylcholinesterase), NG108-15 cells are extensively used to explore neuronal functions as a cholinergic cell line. In the present study, differentiation-induced alterations of voltage-gated Ca(2+) channel mRNA, protein, and current were investigated in the NG108-15 cells. Real-time PCR, Western blot, and whole-cell patch-clamp data showed that differentiation caused mRNA, protein, and ion current changes of all Ca(2+) channel subunits. However, the changes of mRNA, protein, and ion current are inconsistent in all Ca(2+) channel subunits. Especially, P/Q- and R-type Ca(2+) channel proteins do not form the functional P/Q- and R-type Ca(2+) channels even if the mRNA and protein of P/Q- and R-type Ca(2+) channels can be detected in NG108-15 cells. These results indicate that differentiation can modulate gene transcription, protein translation, and post-translation of the Ca(2+) channels to induce the alteration of the Ca(2+) ion currents in NG108-15 cells. From these data, we understand that combining real-time PCR, Western blot, and patch-clamp techniques can comprehensively unveil the modulation of the Ca(2+) channels.