Huiyong Yin
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiyong Yin.
Journal of Biological Chemistry | 2007
Ling Gao; Jiakun Wang; Konjeti R. Sekhar; Huiyong Yin; Nicholas F. Yared; Scott N. Schneider; Soumya Sasi; Timothy P. Dalton; Mark E. Anderson; Jefferson Y. Chan; Jason D. Morrow
Consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can mitigate the progression of diseases in which oxidative stress represents a common underlying biochemical process. Nrf2-regulated gene expression regulates detoxification of reactive oxygen species. EPA and DHA were subjected to an in vitro free radical oxidation process that models in vivo conditions. Oxidized n-3 fatty acids reacted directly with the negative regulator of Nrf2, Keap1, initiating Keap1 dissociation with Cullin3, thereby inducing Nrf2-directed gene expression. Liquid chromatography-tandem mass spectrometry analyses of oxidized EPA demonstrated the presence of novel cyclopentenone-containing molecules termed J3-isoprostanes in vitro and in vivo and were shown to induce Nrf2-directed gene expression. These experiments provide a biochemical basis for the hypothesis that formation of J-ring compounds generated from oxidation of EPA and DHA in vivo can reach concentrations high enough to induce Nrf2-based cellular defense systems.
Journal of Biological Chemistry | 2008
Ginger L. Milne; Huiyong Yin; Jason D. Morrow
Free radicals derived primarily from molecular oxygen have been implicated in a variety of human disorders including atherosclerosis, cancer, neurodegenerative diseases, and aging (1). Damage to tissue biomolecules, including lipids, proteins, and DNA, by free radicals is postulated to contribute importantly to the pathophysiology of oxidative stress. Lipids are readily attacked by free radicals resulting in the formation of a number of peroxidation products. One class of oxidation products formed in abundance in vitro and in vivo is the isoprostanes (IsoPs),2 which were discovered by our laboratory in 1990. IsoPs are a series of prostaglandin (PG)-like compounds produced by the free radical-catalyzed peroxidation of arachidonic acid independent of the cyclooxygenase (2). Over the past 20 years, we and others have carried out a large number of studies defining the basic chemistry and biochemistry involved in the formation and metabolism of the IsoPs. In addition, we have shown that levels of IsoPs are increased in a number of human diseases, and it is currently recognized that measurement of these molecules is the most accurate analytical method to assess oxidative injury in vivo. Further, a number of IsoPs have been found to possess potent biological activity and thus are likely also mediators of oxidant injury (3). In recent years, additional related compounds, derived from various polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) (4) and docosahexaenoic acid (DHA) (5), have been discovered to be formed as products of the IsoP pathway. It is the purpose herein to summarize our current knowledge regarding the IsoPs including the chemistry and biochemistry of their formation, the utility of measuring these compounds as markers of in vivo oxidant stress, and their pharmacological properties.
Journal of Clinical Investigation | 2012
Ming-Zhi Zhang; Bing Yao; Shilin Yang; Li Jiang; Suwan Wang; Xiaofeng Fan; Huiyong Yin; Karlton Wong; Tomoki Miyazawa; Jianchun Chen; Ingrid J. Chang; Amar B. Singh; Raymond C. Harris
Renal tubule epithelia represent the primary site of damage in acute kidney injury (AKI), a process initiated and propagated by the infiltration of macrophages. Here we investigated the role of resident renal macrophages and dendritic cells in recovery from AKI after ischemia/reperfusion (I/R) injury or a novel diphtheria toxin-induced (DT-induced) model of selective proximal tubule injury in mice. DT-induced AKI was characterized by marked renal proximal tubular cell apoptosis. In both models, macrophage/dendritic cell depletion during the recovery phase increased functional and histologic injury and delayed regeneration. After I/R-induced AKI, there was an early increase in renal macrophages derived from circulating inflammatory (M1) monocytes, followed by accumulation of renal macrophages/dendritic cells with a wound-healing (M2) phenotype. In contrast, DT-induced AKI only generated an increase in M2 cells. In both models, increases in M2 cells resulted largely from in situ proliferation in the kidney. Genetic or pharmacologic inhibition of macrophage colony-stimulating factor (CSF-1) signaling blocked macrophage/dendritic cell proliferation, decreased M2 polarization, and inhibited recovery. These findings demonstrated that CSF-1-mediated expansion and polarization of resident renal macrophages/dendritic cells is an important mechanism mediating renal tubule epithelial regeneration after AKI.
Chemical Reviews | 2011
Ginger L. Milne; Huiyong Yin; Klarissa D. Hardy; Sean S. Davies; L. Jackson Roberts
Free radicals derived primarily from molecular oxygen have been implicated in a variety of human disorders including atherosclerosis, cancer, neurodegenerative diseases, and aging.1 Damage to tissue biomolecules, including lipids, proteins, and DNA, by free radicals is postulated to contribute importantly to the pathophysiology of oxidative stress. Lipids are readily attacked by free radicals resulting in the formation of a number of peroxidation products.2 The isoprostanes (IsoPs) are a unique series of prostaglandin-like compounds formed in vivo via the non-enzymatic free radical-initiated peroxidation of arachidonic acid, a ubiquitous polyunsaturated fatty acid (PUFA). Since discovery of these molecules over twenty years ago by Morrow and Roberts, one class of IsoPs, the F2-IsoPs, have become the biomarker of choice for assessing endogenous oxidative stress because these molecules are chemically stability and have been detected in all biological fluids and tissues analyzed.3-5 In addition to F2-IsoPs, a variety of IsoPs with different ring structures have been identified. Several of these compounds possess potent biological activities that could account for some of the pathophysiological effects of oxidative injury. Further, IsoP-like molecules are also generated from a number of different PUFAs including α-linolenic acid, eicosapentaenoic acid (EPA), adrenic acid, and docosahexaenoic acid (DHA) (Figure 1). There are many excellent reviews in the literature describing not only the quantification of F2-IsoPs in human health and disease but also the biological activities of these molecules.6-9 Thus, this review seeks to give readers a comprehensive, up-to-date overview of our current knowledge regarding IsoPs including the chemistry and biochemistry of their formation and metabolism, the utility of measuring these compounds as markers of in vivo oxidant stress, and their biological properties.
Cell Metabolism | 2014
Chen-Song Zhang; Bin Jiang; Mengqi Li; Mingjiang Zhu; Yongying Peng; Yalin Zhang; Yu-Qing Wu; Terytty Yang Li; Yu Liang; Zailian Lu; Guili Lian; Qing Liu; Huiling Guo; Zhenyu Yin; Zhiyun Ye; Jiahuai Han; Jia-Wei Wu; Huiyong Yin; Shu-Yong Lin; Sheng-Cai Lin
AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs.
Methods in Enzymology | 2007
Ginger L. Milne; Huiyong Yin; Joshua D. Brooks; Stephanie C. Sanchez; L. Jackson Roberts; Jason D. Morrow
Oxidant stress has been implicated in a wide variety of disease processes. One method to quantify oxidative injury is to measure lipid peroxidation. Quantification of a group of prostaglandin F(2)-like compounds derived from the nonezymatic oxidation of arachidonic acid, termed the F(2)-isoprostanes (F(2)-IsoPs), provides an accurate assessment of oxidative stress both in vitro and in vivo. In fact, in a recent National Institutes of Health-sponsored independent study, F(2)-IsoPs were shown to be the most reliable index of in vivo oxidant stress when compared against other well-known biomarkers. This article summarizes current methodology used to quantify these molecules. Our laboratorys method to measure F(2)-IsoPs in biological fluids and tissues using gas chromatography-mass spectrometry is detailed herein. In addition, other mass spectrometric approaches, as well as immunological methods to measure these compounds, are discussed. Finally, the utility of these molecules as in vivo biomarkers of oxidative stress is summarized.
Journal of Pharmacology and Experimental Therapeutics | 2008
Ashley E. Brady; Carrie K. Jones; Thomas M. Bridges; J. Phillip Kennedy; Analisa D. Thompson; Justin U. Heiman; Micah L. Breininger; Patrick R. Gentry; Huiyong Yin; Satyawan Jadhav; Jana K. Shirey; P. Jeffrey Conn; Craig W. Lindsley
Previous clinical and animal studies suggest that selective activators of M1 and/or M4 muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimers disease. However, highly selective centrally penetrant activators of either M1 or M4 have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M4 mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M4. VU0152099 and VU0152100 had no agonist activity but potentiated responses of M4 to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M4 reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M4 plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M4 may mimic some of the antipsychotic-like effects of less selective mAChR agonists.
Journal of Biological Chemistry | 2006
Ling Gao; Huiyong Yin; Ginger L. Milne; Ned A. Porter; Jason D. Morrow
Eicosapentaenoic acid (EPA, C20:5, ω-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from ω-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 μg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.
Circulation-arrhythmia and Electrophysiology | 2011
Hyun Seok Hwang; Can Hasdemir; Derek R. Laver; Divya Mehra; Kutsal Turhan; Michela Faggioni; Huiyong Yin; Björn C. Knollmann
Background— Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin (Casq2) and can be difficult to treat. The class Ic antiarrhythmic drug flecainide blocks RyR2 channels and prevents CPVT in mice and humans. It is not known whether other class I antiarrhythmic drugs also block RyR2 channels and to what extent RyR2 channel inhibition contributes to antiarrhythmic efficacy in CPVT. Methods and Results— We first measured the effect of all class I antiarrhythmic drugs marketed in the United States (quinidine, procainamide, disopyramide, lidocaine, mexiletine, flecainide, and propafenone) on single RyR2 channels incorporated into lipid bilayers. Only flecainide and propafenone inhibited RyR2 channels, with the S-enantiomer of propafenone having a significantly lower potency than R-propafenone or flecainide. In Casq2−/− myocytes, the propafenone enantiomers and flecainide significantly reduced arrhythmogenic Ca2+ waves at clinically relevant concentrations, whereas Na+ channel inhibitors without RyR2 blocking properties did not. In Casq2−/− mice, 5 mg/kg R-propafenone or 20 mg/kg S-propafenone prevented exercise-induced CPVT, whereas procainamide (20 mg/kg) or lidocaine (20 mg/kg) were ineffective (n=5 to 9 mice, P<0.05). QRS duration was not significantly different, indicating a similar degree of Na+ channel inhibition. Clinically, propafenone (900 mg/d) prevented ICD shocks in a 22-year-old CPVT patient who had been refractory to maximal standard drug therapy and bilateral stellate ganglionectomy. Conclusions— RyR2 cardiac Ca2+ release channel inhibition appears to determine efficacy of class I drugs for the prevention of CPVT in Casq2−/− mice. Propafenone may be an alternative to flecainide for CPVT patients symptomatic on &bgr;-blockers.
Lipids | 2005
Erik S. Musiek; Huiyong Yin; Ginger L. Milne; Jason D. Morrow
Isoprostanes (IsoPs), lipid peroxidation products formed via the free radical-mediated oxidation of arachidonic acid, have become the “gold standard” biomarker of oxidative stress in vivo over the past 15 yr. Significant advances have been made in understanding this important pathway of lipid peroxidation. Recent studies from our laboratory are discussed that have provided insights into the mechanism of formation and regioisomeric distribution of these compounds and that have identified novel products of the IsoP pathway such as cyclized dioxolane IsoPs, IsoP-derived racemic prostaglandins, and reactive cyclopentenone IsoP, the latter of which possess potent biological actions. Furthermore, new independent studies have demonstrated that IsoPs are the most reliable available marker of lipid peroxidation in vivo, and recent work examining IsoP formation has provided valuable infromation about the pathogenesis of numerous human diseases. Thus, the complexity of the IsoP pathway has expanded, providing novel insights into mechanisms of lipid peroxidation in vivo and allowing investigators to explore the role of oxidative stress in human disease.