Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huiyuan Zhu is active.

Publication


Featured researches published by Huiyuan Zhu.


Nano Letters | 2013

Monodisperse MxFe3–xO4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction

Huiyuan Zhu; Sen Zhang; Yu-Xi Huang; Liheng Wu; Shouheng Sun

Sub-10 nm nanoparticles (NPs) of M(II)-substituted magnetite MxFe3-xO4 (MxFe1-xO•Fe2O3) (M = Mn, Fe, Co, Cu) were synthesized and studied as electrocatalysts for oxygen reduction reaction (ORR) in 0.1 M KOH solution. Loaded on commercial carbon support, these MxFe3-xO4 NPs showed the M(II)-dependent ORR catalytic activities with MnxFe3-xO4 being the most active followed by CoxFe3-xO4, CuxFe3-xO4, and Fe3O4. The ORR activity of the MnxFe3-xO4 was further tuned by controlling x and MnFe2O4 NPs were found to be as efficient as the commercial Pt in catalyzing ORR. The MnFe2O4 NPs represent a new class of highly efficient non-Pt catalyst for ORR in alkaline media.


Journal of the American Chemical Society | 2013

Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction

Huiyuan Zhu; Sen Zhang; Shaojun Guo; Dong Su; Shouheng Sun

To further enhance the catalytic activity and durability of nanocatalysts for the oxygen reduction reaction (ORR), we synthesized a new class of 20 nm × 2 nm ternary alloy FePtM (M = Cu, Ni) nanorods (NRs) with controlled compositions. Supported on carbon support and treated with acetic acid as well as electrochemical etching, these FePtM NRs were converted into core/shell FePtM/Pt NRs. These core/shell NRs, especially FePtCu/Pt NRs, exhibited much improved ORR activity and durability. The Fe10Pt75Cu15 NRs showed a mass current densities of 1.034 A/mgPt at 512 mV vs Ag/AgCl and 0.222 A/mgPt at 557 mV vs Ag/AgCl, which are much higher than those for a commercial Pt catalyst (0.138 and 0.035 A/mgPt, respectively). Our controlled synthesis provides a general approach to core/shell NRs with enhanced catalysis for the ORR or other chemical reactions.


Journal of the American Chemical Society | 2014

Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization

Sen Zhang; Xu Zhang; Guangming Jiang; Huiyuan Zhu; Shaojun Guo; Dong Su; Gang Lu; Shouheng Sun

Controlling nanoparticle (NP) surface strain, i.e. compression (or stretch) of surface atoms, is an important approach to tune NP surface chemistry and to optimize NP catalysis for chemical reactions. Here we show that surface Pt strain in the core/shell FePt/Pt NPs with Pt in three atomic layers can be rationally tuned via core structural transition from cubic solid solution [denoted as face centered cubic (fcc)] structure to tetragonal intermetallic [denoted as face centered tetragonal (fct)] structure. The high activity observed from the fct-FePt/Pt NPs for oxygen reduction reaction (ORR) is due to the release of the overcompressed Pt strain by the fct-FePt as suggested by quantum mechanics-molecular mechanics (QM-MM) simulations. The Pt strain effect on ORR can be further optimized when Fe in FePt is partially replaced by Cu. As a result, the fct-FeCuPt/Pt NPs become the most efficient catalyst for ORR and are nearly 10 times more active in specific activity than the commercial Pt catalyst. This structure-induced surface strain control opens up a new path to tune and optimize NP catalysis for ORR and many other chemical reactions.


Journal of the American Chemical Society | 2015

Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction

Liheng Wu; Qing Li; Cheng Hao Wu; Huiyuan Zhu; Adriana Mendoza-Garcia; Bo Shen; Jinghua Guo; Shouheng Sun

Monodisperse cobalt (Co) nanoparticles (NPs) were synthesized and stabilized against oxidation via reductive annealing at 600 °C. The stable Co NPs are active for catalyzing the oxygen evolution reaction (OER) in 0.1 M KOH, producing a current density of 10 mA/cm(2) at an overpotential of 0.39 V (1.62 V vs RHE, no iR-correction). Their catalysis is superior to the commercial Ir catalyst in both activity and stability. These Co NPs are also assembled into a monolayer array on the working electrode, allowing the detailed study of their intrinsic OER activity. The Co NPs in the monolayer array show 15 times higher turnover frequency (2.13 s(-1)) and mass activity (1949 A/g) than the NPs deposited on conventional carbon black (0.14 s(-1) and 126 A/g, respectively) at an overpotential of 0.4 V. These stable Co NPs are a promising new class of noble-metal-free catalyst for water splitting.


Nano Letters | 2015

New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid

Qing Li; Liheng Wu; Gang Wu; Dong Su; Haifeng Lv; Sen Zhang; Wenlei Zhu; Anix Casimir; Huiyuan Zhu; Adriana Mendoza-Garcia; Shouheng Sun

Fully ordered face-centered tetragonal (fct) FePt nanoparticles (NPs) are synthesized by thermal annealing of the MgO-coated dumbbell-like FePt-Fe3O4 NPs followed by acid washing to remove MgO. These fct-FePt NPs show strong ferromagnetism with room temperature coercivity reaching 33 kOe. They serve as a robust electrocatalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 and hydrogen evolution reaction (HER) in 0.5 M H2SO4 with much enhanced activity (the most active fct-structured alloy NP catalyst ever reported) and stability (no obvious Fe loss and NP degradation after 20 000 cycles between 0.6 and 1.0 V (vs RHE)). Our work demonstrates a reliable approach to FePt NPs with much improved fct-ordering and catalytic efficiency for ORR and HER.


Journal of the American Chemical Society | 2012

Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles.

Sen Zhang; Shaojun Guo; Huiyuan Zhu; Dong Su; Shouheng Sun

Using FePtAu nanoparticles (NPs) as an example, this Communication demonstrates a new structure-control strategy to tune and optimize NP catalysis. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face-centered cubic (fcc) structure to chemically ordered face-centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu NPs have mass activity as high as 2809.9 mA/mg Pt and retain 92.5% of this activity after a 13 h stability test. They become the most efficient NP catalyst ever reported for FAOR. This structure-control strategy can be extended to other multimetallic NP systems, providing a general approach to advanced NP catalysts with desired activity and durability control for practical applications.


ACS Nano | 2015

Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction.

Guangming Jiang; Huiyuan Zhu; Xu Zhang; Bo Shen; Liheng Wu; Sen Zhang; Gang Lu; Zhongbiao Wu; Shouheng Sun

We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at ∼8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Our study offers a general approach to enhance Pd catalysis in acid for ORR.


Chemical Communications | 2016

A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

Peiwen Wu; Wenshuai Zhu; Yanhong Chao; Jinshui Zhang; Pengfei Zhang; Huiyuan Zhu; Changfeng Li; Zhigang Chen; Huaming Li; Sheng Dai

Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.


Angewandte Chemie | 2015

Controlled Anisotropic Growth of Co‐Fe‐P from Co‐Fe‐O Nanoparticles

Adriana Mendoza-Garcia; Huiyuan Zhu; Yongsheng Yu; Qing Li; Lin Zhou; Dong Su; Matthew J. Kramer; Shouheng Sun

A facile approach to bimetallic phosphides, Co-Fe-P, by a high-temperature (300 °C) reaction between Co-Fe-O nanoparticles and trioctylphosphine is presented. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both the nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co(0.54)Fe(0.46))2P, shows enhanced catalysis for the oxygen evolution reaction in KOH with its catalytic efficiency surpassing the commercial Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for important catalysis and energy storage applications.


Nano Letters | 2014

Monolayer Assembly of Ferrimagnetic CoxFe3–xO4 Nanocubes for Magnetic Recording

Liheng Wu; Pierre-Olivier Jubert; David Berman; Wayne Isami Imaino; Alshakim Nelson; Huiyuan Zhu; Sen Zhang; Shouheng Sun

We report a facile synthesis of monodisperse ferrimagnetic Co(x)Fe(3-x)O4 nanocubes (NCs) through thermal decomposition of Fe(acac)3 and Co(acac)2 (acac = acetylacetonate) in the presence of oleic acid and sodium oleate. The sizes of the NCs are tuned from 10 to 60 nm, and their composition is optimized at x = 0.6 to show strong ferrimagnetism with the 20 nm Co0.6Fe2.4O4 NCs showing a room temperature Hc of 1930 Oe. The ferrimagnetic NCs are self-assembled at the water-air interface into a large-area (in square centimeter) monolayer array with a high packing density and (100) texture. The 20 nm NC array can be recorded at linear densities ranging from 254 to 31 kfci (thousand flux changes per inch). The work demonstrates the great potential of solution-phase synthesis and self-assembly of magnetic array for magnetic recording applications.

Collaboration


Dive into the Huiyuan Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Dai

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pengfei Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinshui Zhang

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge