Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hülya Bayır is active.

Publication


Featured researches published by Hülya Bayır.


Pediatrics | 2005

Unexpected Increased Mortality After Implementation of a Commercially Sold Computerized Physician Order Entry System

Yong Y. Han; Joseph A. Carcillo; Shekhar T. Venkataraman; Robert Clark; R. Scott Watson; Trung C. Nguyen; Hülya Bayır; Richard A. Orr

Objective. In response to the landmark 1999 report by the Institute of Medicine and safety initiatives promoted by the Leapfrog Group, our institution implemented a commercially sold computerized physician order entry (CPOE) system in an effort to reduce medical errors and mortality. We sought to test the hypothesis that CPOE implementation results in reduced mortality among children who are transported for specialized care. Methods. Demographic, clinical, and mortality data were collected of all children who were admitted via interfacility transport to our regional, academic, tertiary-care level children’s hospital during an 18-month period. A commercially sold CPOE program that operated within the framework of a general, medical-surgical clinical application platform was rapidly implemented hospital-wide over 6 days during this period. Retrospective analyses of pre-CPOE and post-CPOE implementation time periods (13 months before and 5 months after CPOE implementation) were subsequently performed. Results. Among 1942 children who were referred and admitted for specialized care during the study period, 75 died, accounting for an overall mortality rate of 3.86%. Univariate analysis revealed that mortality rate significantly increased from 2.80% (39 of 1394) before CPOE implementation to 6.57% (36 of 548) after CPOE implementation. Multivariate analysis revealed that CPOE remained independently associated with increased odds of mortality (odds ratio: 3.28; 95% confidence interval: 1.94–5.55) after adjustment for other mortality covariables. Conclusions. We have observed an unexpected increase in mortality coincident with CPOE implementation. Although CPOE technology holds great promise as a tool to reduce human error during health care delivery, our unanticipated finding suggests that when implementing CPOE systems, institutions should continue to evaluate mortality effects, in addition to medication error rates, for children who are dependent on time-sensitive therapies.


Nature Cell Biology | 2013

Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells

Charleen T. Chu; Jing Ji; Ruben K. Dagda; Jian Fei Jiang; Yulia Y. Tyurina; Alexandr A. Kapralov; Vladimir A. Tyurin; Naveena Yanamala; Indira H. Shrivastava; Dariush Mohammadyani; Kent Zhi Qiang Wang; Jianhui Zhu; Judith Klein-Seetharaman; Krishnakumar Balasubramanian; Andrew A. Amoscato; Grigory G. Borisenko; Zhentai Huang; Aaron M. Gusdon; Amin Cheikhi; Erin Steer; Ruth Wang; Catherine J. Baty; Simon Watkins; Ivet Bahar; Hülya Bayır; Valerian E. Kagan

Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an ‘eat-me’ signal for the elimination of damaged mitochondria from neuronal cells.


Free Radical Biology and Medicine | 2009

Cytochrome c/cardiolipin relations in mitochondria: a kiss of death

Valerian E. Kagan; Hülya Bayır; Natalia A. Belikova; Olexandr Kapralov; Yulia Y. Tyurina; Vladimir A. Tyurin; Jianfei Jiang; Detcho A. Stoyanovsky; Peter Wipf; Patrick M. Kochanek; Joel S. Greenberger; Bruce R. Pitt; Anna A. Shvedova; Grigory G. Borisenko

Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt cs conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria--its asymmetric transmembrane distribution and mechanisms of collapse, the regulation of its synthesis, remodeling, and fatty acid composition--are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with antiapoptotic effects are presented.


Journal of Neurotrauma | 2004

Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients.

Hülya Bayır; Donald W. Marion; Ava M. Puccio; Stephen R. Wisniewski; Keri L. Janesko; Robert Clark; Patrick M. Kochanek

Striking gender differences have been reported in the pathophysiology and outcome of acute neurological injury. Greater neuroprotection in females versus males may be due, in part, to direct and indirect sex hormone-mediated antioxidant mechanisms. Progesterone administration decreases brain levels of F(2)-isoprostane, a marker of lipid peroxidation, after experimental traumatic brain injury (TBI) in male rats, and estrogen is neuroprotective in experimental neurological injury. In this study, we evaluated the effect of gender on lipid peroxidation, as assessed by cerebrospinal fluid (CSF) levels of F(2)-isoprostane, after severe TBI in humans. Lipid peroxidation was assessed in CSF from 68 adults enrolled in two randomized controlled trials evaluating the effect of therapeutic hypothermia after severe TBI (Glasgow coma scale [GCS] score </= 8). Patients treated with hypothermia (n = 41, 12 females, 29 males) were cooled to 32-33 degrees C (within approximately 6 h) for either 24 or 48 h and then re-warmed. F(2)-isoprostane levels were assessed by ELISA in ventricular CSF samples (n = 199) on day 1, 2, and 3. The association between age, GCS score, time, gender, treatment, duration of treatment, core temperature at the time of CSF sampling, secondary hypoxemia, and CSF F(2)-isoprostane level was assessed by multivariate and dichotomous analyses. F(2)-isoprostane was approximately 2-fold higher in males than females (145.8 +/- 39.6 versus 75.4 +/- 16.6 pg/mL, day 1 p = 0.018). An effect of time after injury (p = 0.007) was reflected by a marked early peak in F(2)-isoprostane (day 1). CSF F(2)-isoprostane was also associated with hypoxemia (p = 0.04). Hypothermia tended to decrease F(2)-isoprostane levels only in males on d1 after TBI. To our knowledge, this is the first study showing gender differences in lipid peroxidation after clinical TBI. Lipid peroxidation occurs early after severe TBI in adults and is more prominent in males vs females. These results established that gender is an important consideration in clinical trial design, particularly in the case of antioxidant strategies.


Nature Neuroscience | 2012

Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury

Jing Ji; Anthony E. Kline; Andrew A. Amoscato; Alejandro K. Samhan-Arias; Louis J. Sparvero; Vladimir A. Tyurin; Yulia Y. Tyurina; Bruno Fink; Mioara D. Manole; Ava M. Puccio; David O. Okonkwo; Jeffrey P. Cheng; Henry Alexander; Robert Clark; Patrick M. Kochanek; Peter Wipf; Valerian E. Kagan; Hülya Bayır

The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery.


Journal of Neurotrauma | 2011

Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury.

Robert H. Garman; Larry W. Jenkins; Robert C. Switzer; Richard A. Bauman; Peter V. Swauger; Steven Parks; David V. Ritzel; C. Edward Dixon; Robert Clark; Hülya Bayır; Valerian E. Kagan; Edwin K. Jackson; Patrick M. Kochanek

Blast-induced traumatic brain injury (TBI) is the signature insult in combat casualty care. Survival with neurological damage from otherwise lethal blast exposures has become possible with body armor use. We characterized the neuropathologic alterations produced by a single blast exposure in rats using a helium-driven shock tube to generate a nominal exposure of 35 pounds per square inch (PSI) (positive phase duration ∼ 4 msec). Using an IACUC-approved protocol, isoflurane-anesthetized rats were placed in a steel wedge (to shield the body) 7 feet inside the end of the tube. The left side faced the blast wave (with head-only exposure); the wedge apex focused a Mach stem onto the rats head. The insult produced ∼ 25% mortality (due to impact apnea). Surviving and sham rats were perfusion-fixed at 24 h, 72 h, or 2 weeks post-blast. Neuropathologic evaluations were performed utilizing hematoxylin and eosin, amino cupric silver, and a variety of immunohistochemical stains for amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), ED1, and rat IgG. Multifocal axonal degeneration, as evidenced by staining with amino cupric silver, was present in all blast-exposed rats at all time points. Deep cerebellar and brainstem white matter tracts were most heavily stained with amino cupric silver, with the morphologic staining patterns suggesting a process of diffuse axonal injury. Silver-stained sections revealed mild multifocal neuronal death at 24 h and 72 h. GFAP, ED1, and Iba1 staining were not prominently increased, although small numbers of reactive microglia were seen within areas of neuronal death. Increased blood-brain barrier permeability (as measured by IgG staining) was seen at 24 h and primarily affected the contralateral cortex. Axonal injury was the most prominent feature during the initial 2 weeks following blast exposure, although degeneration of other neuronal processes was also present. Strikingly, silver staining revealed otherwise undetected abnormalities, and therefore represents a recommended outcome measure in future studies of blast TBI.


Annals of Neurology | 2007

Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis

Hülya Bayır; Vladimir A. Tyurin; Yulia Y. Tyurina; Rosa Viner; Vladimir B. Ritov; Andrew A. Amoscato; Qing Zhao; Xiaojing Zhang; Keri Janesko-Feldman; Henry Alexander; Liana V. Basova; Robert S. B. Clark; Patrick M. Kochanek; Valerian E. Kagan

Enhanced lipid peroxidation is well established in traumatic brain injury. However, its molecular targets, identity of peroxidized phospholipid species, and their signaling role have not been deciphered.


Journal of Biological Chemistry | 2009

Starving Neurons Show Sex Difference in Autophagy

Lina Du; Robert W. Hickey; Hülya Bayır; Simon Watkins; Vladimir A. Tyurin; Fengli Guo; Patrick M. Kochanek; Larry W. Jenkins; Jin Ren; Greg Gibson; Charleen T. Chu; Valerian E. Kagan; Robert S. B. Clark

Sex-dependent differences in adaptation to famine have long been appreciated, thought to hinge on female versus male preferences for fat versus protein sources, respectively. However, whether these differences can be reduced to neurons, independent of typical nutrient depots, such as adipose tissue, skeletal muscle, and liver, was heretofore unknown. A vital adaptation to starvation is autophagy, a mechanism for recycling amino acids from organelles and proteins. Here we show that segregated neurons from males in culture are more vulnerable to starvation than neurons from females. Nutrient deprivation decreased mitochondrial respiration, increased autophagosome formation, and produced cell death more profoundly in neurons from males versus females. Starvation-induced neuronal death was attenuated by 3-methyladenine, an inhibitor of autophagy; Atg7 knockdown using small interfering RNA; or l-carnitine, essential for transport of fatty acids into mitochondria, all more effective in neurons from males versus females. Relative tolerance to nutrient deprivation in neurons from females was associated with a marked increase in triglyceride and free fatty acid content and a cytosolic phospholipase A2-dependent increase in formation of lipid droplets. Similar sex differences in sensitivity to nutrient deprivation were seen in fibroblasts. However, although inhibition of autophagy using Atg7 small interfering RNA inhibited cell death during starvation in neurons, it increased cell death in fibroblasts, implying that the role of autophagy during starvation is both sex- and tissue-dependent. Thus, during starvation, neurons from males more readily undergo autophagy and die, whereas neurons from females mobilize fatty acids, accumulate triglycerides, form lipid droplets, and survive longer.


Journal of Neurotrauma | 2004

Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: The impact of gender, age, and hypothermia

Amy K. Wagner; Hülya Bayır; Dianxu Ren; Ava M. Puccio; Ross Zafonte; Patrick M. Kochanek

Excitotoxicity and ischemia can result in oxidative stress after TBI. Female sex hormones are hypothesized to be neuroprotective after TBI by affecting multiple mechanisms of secondary injury, including oxidative damage, excitotoxicity and ischemia. Ca2+ mediated oxidative stress increases with age, and hypothermia is known to attenuate secondary injury. The purpose of this study was to determine if the relationship between cerebral spinal fluid (CSF) markers of excitotoxicity, ischemia, and oxidative damage are gender and age specific and the role of hypothermia in affecting these relationships. F2-isoprostane, glutamate, and lactate/pyruvate, were assessed in CSF from adults (n = 68) with severe TBI (Glasgow coma scale [GCS] score </= 8) using ventricular CSF samples (n = 207) collected on days 1, 2, and 3 post-injury. F2-isoprostane/glutamate and F2-isoprostane/lactate/pyruvate ratios were determined for patients at each time point. Six-month Glasgow Outcome Scores (GOS) were also obtained. Repeated measures multivariate analysis showed a significant gender effect (p < 0.002) and gender*time interaction (p = 0.012) on F2-isoprostane/glutamate ratios. A significant gender effect (p = 0.050) and gender*time interaction (p = 0.049) was also seen with F2-isoprostane/lactate/pyruvate. Hypothermia (p = 0.001) and age (p = 0.026) significantly increased F2-isoprostane/glutamate ratios. Females had a significant inverse relationship between day 1 F2-isoprostane/glutamate ratios and GOS scores (r =- 0.43; p = 0.05) as well as day 1 F2-isoprostane/lactate/pyruvate ratio (r =- 0.46; p = 0.04) and GOS scores. These results indicate that females have smaller oxidative damage loads than males for a given excitotoxic or ischemic insult and female gonadal hormones may play a role in mediating this neuroprotective effect. These results also suggest that susceptibility to glutamate mediated oxidative damage increases with age and that hypothermia differentially attenuates CSF glutamate versus F2-isoprostane production. Gender and age differences in TBI pathophysiology should be considered when conducting clinical trials in TBI.


Critical Care | 2008

Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis – there is nothing more practical than a good theory

Hülya Bayır; Valerian E. Kagan

Apoptosis contributes to cell death in common intensive care unit disorders such as traumatic brain injury and sepsis. Recent evidence suggests that this form of cell death is both clinically relevant and a potential therapeutic target in critical illness. Mitochondrial reactive oxygen species (ROS) have become a target for drug discovery in recent years since their production is characteristic of early stages of apoptosis. Among many antioxidant agents, stable nitroxide radicals targeted to mitochondria have attracted attention due to their ability to combine electron and free radical scavenging action with recycling capacities. Specific mechanisms of enhanced ROS generation in mitochondria and their translation into apoptotic signals are not well understood. This review focuses on several contemporary aspects of oxidative stress-mediated mitochondrial injury, particularly as they relate to oxidation of lipids and their specific signaling roles in apoptosis and phagocytosis of apoptotic cells.

Collaboration


Dive into the Hülya Bayır's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Clark

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfei Jiang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Vincent Vagni

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge