Humberto H Lara
Universidad Autónoma de Nuevo León
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Humberto H Lara.
Journal of Nanobiotechnology | 2005
Jose Luis Elechiguerra; Justin L. Burt; Jose Ruben Morones; Alejandra Camacho-Bragado; Xiaoxia Gao; Humberto H Lara; Miguel José Yacamán
The interaction of nanoparticles with biomolecules and microorganisms is an expanding field of research. Within this field, an area that has been largely unexplored is the interaction of metal nanoparticles with viruses. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus. The regular spatial arrangement of the attached nanoparticles, the center-to-center distance between nanoparticles, and the fact that the exposed sulfur-bearing residues of the glycoprotein knobs would be attractive sites for nanoparticle interaction suggest that silver nanoparticles interact with the HIV-1 virus via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro.
Journal of Nanobiotechnology | 2010
Humberto H Lara; Nilda Vanesa Ayala-Núñez; Liliana Ixtepan-Turrent; Cristina Rodríguez-Padilla
BackgroundSilver nanoparticles have proven to exert antiviral activity against HIV-1 at non-cytotoxic concentrations, but the mechanism underlying their HIV-inhibitory activity has not been not fully elucidated. In this study, silver nanoparticles are evaluated to elucidate their mode of antiviral action against HIV-1 using a panel of different in vitro assays.ResultsOur data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry. Silver nanoparticles bind to gp120 in a manner that prevents CD4-dependent virion binding, fusion, and infectivity, acting as an effective virucidal agent against cell-free virus (laboratory strains, clinical isolates, T and M tropic strains, and resistant strains) and cell-associated virus. Besides, silver nanoparticles inhibit post-entry stages of the HIV-1 life cycle.ConclusionsThese properties make them a broad-spectrum agent not prone to inducing resistance that could be used preventively against a wide variety of circulating HIV-1 strains.
Journal of Nanobiotechnology | 2011
Humberto H Lara; Elsa N Garza-Treviño; Liliana Ixtepan-Turrent; Dinesh K. Singh
The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs) bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles.
Journal of Nanobiotechnology | 2010
Humberto H Lara; Liliana Ixtepan-Turrent; Elsa N Garza-Treviño; Cristina Rodríguez-Padilla
BackgroundPrevious in vitro studies have demonstrated that polyvinylpyrrolidone coated silver nanoparticles (PVP-coated AgNPs) have antiviral activity against HIV-1 at non-cytotoxic concentrations. These particles also demonstrate broad spectrum virucidal activity by preventing the interaction of HIV-1 gp120 and cellular CD4, thereby inhibiting fusion or entry of the virus into the host cell. In this study, we evaluated the antiviral activity of PVP-coated AgNPs as a potential topical vaginal microbicide to prevent transmission of HIV-1 infection using human cervical culture, an in vitro model that simulates in vivo conditions.ResultsWhen formulated into a non-spermicidal gel (Replens) at a concentration of 0.15 mg/mL, PVP-coated AgNPs prevented the transmission of cell-associated HIV-1 and cell-free HIV-1 isolates. Importantly, PVP-coated AgNPs were not toxic to the explant, even when the cervical tissues were exposed continuously to 0.15 mg/mL of PVP-coated AgNPs for 48 h. Only 1 min of PVP-coated AgNPs pretreatment to the explant was required to prevent transmission of HIV-1. Pre-treatment of the cervical explant with 0.15 mg/mL PVP-coated AgNPs for 20 min followed by extensive washing prevented the transmission of HIV-1 in this model for 48 h.ConclusionsA formulation of PVP-coated AgNPs homogenized in Replens gel acts rapidly to inhibit HIV-1 transmission after 1 min and offers long-lasting protection of the cervical tissue from infection for 48 h, with no evidence of cytotoxicity observed in the explants.Based on this data, PVP-coated AgNPs are a promising microbicidal candidate for use in topical vaginal/cervical agents to prevent HIV-1 transmission, and further research is warranted.
AIDS | 2003
Ariela Zussman; Liliana Lara; Humberto H Lara; Zvi Bentwich; Gadi Borkow
Objective: To determine the efficacy of UC781 in preventing HIV-1 transmission through cervical tissue. Design: Use of human cervical tissue organ culture, in which the cervix is in the upper chamber of a transwell and transmission of infective virus is quantified in the lower chamber. Methods: Five-millimeter pieces of cervical tissues are exposed to UC781. After thorough removal of the drug, the tissues are exposed to high doses of cell-free or cell-associated HIV-1. Transmission of HIV-1 through the cervix is measured by determining infection of target cells in the lower chamber. Results: Exposure of cervix to 0.5 μM UC781 for 30 min, followed by extensive washing away of the residual drug, resulted in 95% reduction of subsequent viral transmission. Exposure of the cervix to 1 μM UC781 for 20 min, or 10 μM UC781 for 2 min, resulted in neutralization of T- and M-tropic HIV-1 isolates of various clades, and prevention of cell-associated HIV-1 transmission. Moreover, a 20 min incubation with 10 μM UC781 abolished HIV-1 transmission through the cervix for 48 h after drug pretreatment. Importantly, UC781 was not toxic, even when the cervical tissues were exposed to 20 μM UC781 for 24 h. UC781 was effective against transmission of both cell-free and cell-associated HIV-1 also when formulated into a non-spermicidal (Replen) or spermicidal (BufferGel) gel. Conclusions: Exposure of the cervix to UC781 results in blocking of subsequent HIV-1 transmission with no toxicity. Therefore, UC781 is an excellent candidate microbiocide.
Journal of Nanobiotechnology | 2011
Humberto H Lara; Liliana Ixtepan-Turrent; Elsa N Garza Treviño; Dinesh K. Singh
BackgroundHIV/AIDS pandemic is a worldwide public health issue. There is a need for new approaches to develop new antiviral compounds or other therapeutic strategies to limit viral transmission. The envelope glycoproteins gp120 and gp41 of HIV are the main targets for both silver nanoparticles (AgNPs) and neutralizing antibodies. There is an urgency to optimize the efficiency of the neutralizing antibodies (NABs). In this study, we demonstrated that there is an additive effect between the four NABs and AgNPs when combined against cell-associated HIV-1 infection in vitroResultsFour NABs (Monoclonal antibody to HIV-1 gp41 126-7, HIV-1 gp120 Antiserum PB1 Sub 2, HIV-1 gp120 Antiserum PB1, HIV-1 gp120 Monoclonal Antibody F425 B4e8) with or without AgNPs of 30-50 nm in size were tested against cell free and cell-associated HIVIIIB virus. All NABs inhibited HIV-1 cell free infection at a dose response manner, but with AgNPs an antiviral additive effect was not achieved Although there was no inhibition of infection with cell-associated virus by the NABs itself, AgNPs alone were able to inhibit cell associated virus infection and more importantly, when mixed together with NABs they inhibited the HIV-1 cell associated infection in an additive manner.DiscussionThe most attractive strategies to deal with the HIV problem are the development of a prophylactic vaccine and the development of effective topical vaginal microbicide. For two decades a potent vaccine that inhibits transmission of infection of HIV has been searched. There are vaccines that elicit NABs but none of them has the efficacy to stop transmission of HIV-1 infection. We propose that with the addition of AgNPs, NABs will have an additive effect and become more potent to inhibit cell-associated HIV-1 transmission/infection.ConclusionsThe addition of AgNPs to NABs has significantly increased the neutralizing potency of NABs in prevention of cell-associated HIV-1 transmission/infection. Further exploration is required to standardize potentiation of NABs by AgNPs. It is also required to evaluate in vivo toxicity of AgNPs before AgNPs could be incorporated in any antiviral vaginal creams.
Antimicrobial Agents and Chemotherapy | 2008
Gadi Borkow; Humberto H Lara; Chandice Covington; Adeline Nyamathi; Jeffrey Gabbay
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can be transmitted through breast-feeding and through contaminated blood donations. Copper has potent biocidal properties and has been found to inactivate HIV-1 infectivity. The objective of this study was to determine the capacity of copper-based filters to inactivate HIV-1 in culture media. Medium spiked with high titers of HIV-1 was exposed to copper oxide powder or copper oxide-impregnated fibers or passed through copper-based filters, and the infectious viral titers before and after treatment were determined. Cell-free and cell-associated HIV-1 infectivity was inhibited when exposed to copper oxide in a dose-dependent manner, without cytotoxicity at the active antiviral copper concentrations. Similar dose-dependent inhibition occurred when HIV-1 was exposed to copper-impregnated fibers. Filtration of HIV-1 through filters containing the copper powder or copper-impregnated fibers resulted in viral deactivation of all 12 wild-type or drug-resistant laboratory or clinical, macrophage-tropic and T-cell-tropic, clade A, B, or C, HIV-1 isolates tested. Viral inactivation was not strain specific. Thus, a novel means to inactivate HIV-1 in medium has been developed. This inexpensive methodology may significantly reduce HIV-1 transmission from “mother to child” and/or through blood donations if proven to be effective in breast milk or plasma and safe for use. The successful application of this technology may impact HIV-1 transmission, especially in developing countries where HIV-1 is rampant.
Antiviral Research | 2003
Gadi Borkow; Veerappan Vijayabaskar; Humberto H Lara; Alexander Kalinkovich; Aviva Lapidot
We have recently designed and synthesized aminoglycoside-arginine conjugates (AACs) as potential anti-HIV-1 agents. AACs exert a number of activities related to Tat antagonism. We here present a new set of AACs, conjugates of neomycin B, paromomycin, and neamine with different number of arginines (1-6), their (a) uptake by human T-cell lines, (b) antiviral activities, (c) competition with monoclonal antibody (mAb) 12G5 binding to CXCR4, (d) competition with stromal cell-derived factor-1 (SDF-1alpha) binding to CXCR4, and (e) competition with HIV-1 coat protein gp120 cell penetration. The appearance of mutations in HIV-1 gp120 gene in AACs resistant HIV-1 isolates, supports that AACs inhibit HIV-1 infectivity via interference of gp120-CXCR4 interaction. Our results point that the most potent AACs is the hexa-arginine-neomycin conjugate, the other multi-arginine-aminoglycoside conjugates are less active, and the mono-arginine conjugates display the lowest activity. Our studies demonstrate that, in addition to the core, the number of arginines attached to a specific aminoglycoside, are also important in the design of potent anti-HIV agents. The AACs play an important role, not only as HIV-1 RNA binders but also as inhibitors of viral entry into human cells.
BMC Research Notes | 2011
Humberto H Lara; Liliana Ixtepan-Turrent; Elsa N Garza-Treviño; Jose I Badillo-Almaraz; Cristina Rodríguez-Padilla
BackgroundBovine dialyzable leukocyte extract (bDLE) is derived from immune leukocytes obtained from bovine spleen. DLE has demonstrated to reduce transcription of Human Immunodeficiency Virus Type 1 (HIV-1) and inactivate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Therefore, we decided to clarify the mode of antiviral action of bDLE on the inhibition of HIV-1 infection through a panel of antiviral assays.ResultsThe cytotoxicity, HIV-1 inhibition activity, residual infectivity of bDLE in HIV-1, time of addition experiments, fusion inhibition of bDLE for fusogenic cells and the duration of cell protection even after the removal of bDLE were all assessed in order to discover more about the mode of the antiviral action.HIV-1 infectivity was inhibited by bDLE at doses that were not cytotoxic for HeLa-CD4-LTR-β-gal cells. Pretreatment of HIV-1 with bDLE did not decrease the infectivity of these viral particles. Cell-based fusion assays helped to determine if bDLE could inhibit fusion of Env cells against CD4 cells by membrane fusion and this cell-based fusion was inhibited only when CD4 cells were treated with bDLE. Infection was inhibited in 80% compared with the positive (without EDL) at all viral life cycle stages in the time of addition experiments when bDLE was added at different time points. Finally, a cell-protection assay against HIV-1 infection by bDLE was performed after treating host cells with bDLE for 30 minutes and then removing them from treatment. From 0 to 7 hours after the bDLE was completely removed from the extracellular compartment, HIV-1 was then added to the host cells. The bDLE was found to protect the cells from HIV-1 infection, an effect that was retained for several hours.ConclusionsbDLE acted as an antiviral compound and prevented host cell infection by HIV-1 at all viral life cycle stages. These cell protection effects lingered for hours after the bDLE was removed. Interestingly, bDLE inhibited fusion of fusogenic cells by acting only on CD4 cells. bDLE had no virucidal effect, but could retain its antiviral effect on target cells after it was removed from the extracellular compartment, protecting the cells from infection for hours.bDLE, which has no reported side effects or toxicity in clinical trials, should therefore be further studied to determine its potential use as a therapeutic agent in HIV-1 infection therapy, in combination with known antiretrovirals.
Beilstein Journal of Nanotechnology | 2015
Dulce Romero-Urbina; Humberto H Lara; J. Jesús Velázquez-Salazar; M. Josefina Arellano-Jiménez; Eduardo Larios; Anand Srinivasan; Jose L. Lopez-Ribot; Miguel José Yacamán
Summary Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles.