Humberto M. Pereira
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Humberto M. Pereira.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Alexandre Cassago; Amanda Petrina Scotá Ferreira; Igor Monteze Ferreira; Camila Fornezari; Emerson Rodrigo Machi Gomes; Kai Su Greene; Humberto M. Pereira; Richard C. Garratt; Sandra Martha Gomes Dias; Andre Luis Berteli Ambrosio
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a “gating loop” as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Bioorganic & Medicinal Chemistry | 2010
Marcelo Santos Castilho; Matheus P. Postigo; Humberto M. Pereira; Glaucius Oliva; Adriano D. Andricopulo
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity.
Acta Crystallographica Section D-biological Crystallography | 2003
Humberto M. Pereira; Anne Cleasby; Sérgio D.J. Pena; Glória Regina Franco; Richard C. Garratt
The parasite Schistosoma mansoni, unlike its mammalian hosts, lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. The gene encoding one enzyme of this pathway, purine nucleoside phosphorylase from S. mansoni (SmPNP) was identified, fully sequenced and cloned into the bacterial expression vector pMAL c2G to produce a protein in fusion with maltose-binding protein. The recombinant fusion protein was expressed at high levels and was purified in a single step by amylose resin affinity chromatography. After factor Xa cleavage, SmPNP was purified using a cation-exchange column and crystallized by hanging-drop vapour diffusion using polyethylene glycol 1500 as precipitant in the presence of 20% glycerol in acetate buffer. The use of the non-detergent sulfobetaine 195 (NDSB 195) as an additive had a marked effect on the size of the resulting crystals. Two data sets were obtained, one from a crystal grown in the absence of NDSB 195 and one from a crystal grown in its presence. The crystals are isomorphous and belong to the space group P2(1)2(1)2(1). It is intended to use the structures in the discovery and development of specific inhibitors of SmPNP.
Journal of Biological Chemistry | 2014
Ana Eliza Zeraik; Humberto M. Pereira; Yuri V. Santos; J. Brandao-Neto; Michael Spoerner; Maiara S. Santos; Luiz Alberto Colnago; Richard C. Garratt; Ana Paula U. Araújo; Ricardo DeMarco
Background: Septins are filament-forming proteins involved in membrane-remodeling events. Results: Two crystal structures of a septin with the highest resolution to date reveal the phenomenon of β-strand slippage. Conclusion: A novel mechanistic framework for the influence of the nature of the bound nucleotide and the presence of Mg2+ in septins is proposed. Significance: Identification of strand slippage might contribute to elucidating the mechanism of septin association with membranes. Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.
FEBS Letters | 2011
Vitor Hugo Balasco Serrão; Fernando Alessandro; Victor Emanoel Armini Caldas; Rafaela Leite Marçal; Humberto M. Pereira; Otavio Henrique Thiemann; Richard C. Garratt
SEPT7 G and SEPT7 G bind by molecular sieving (View interaction).
Acta Crystallographica Section D-biological Crystallography | 2010
Humberto M. Pereira; Martha M. Rezende; Marcelo Santos Castilho; Glaucius Oliva; Richard C. Garratt
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Biochimica et Biophysica Acta | 2010
Paulo S. Monzani; Humberto M. Pereira; Fernando A. Melo; F. V. Meirelles; Glaucius Oliva; Júlio C.M. Cascardo
Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The proteins structure was determined at 1.6 A resolution and revealed a new topology for ACBP, containing five alpha-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening.
Anais Da Academia Brasileira De Ciencias | 2006
Luiz F. L. Reis; Marie-Anne Van Sluys; Richard C. Garratt; Humberto M. Pereira; Mauro M. Teixeira
Biosafety of genetically modified organisms (GMOs) and their derivatives is still a major topic in the agenda of government and societies worldwide. The aim of this review is to bring into light that data that supported the decision taken back in 1998 as an exercise to stimulate criticism from the scientific community for upcoming discussions and to avoid emotional and senseless arguments that could jeopardize future development in the field. It must be emphasized that Roundup Ready soybean is just one example of how biotechnology can bring in significant advances for society, not only through increased productivity, but also with beneficial environmental impact, thereby allowing more rational use of agricultural pesticides for improvement of the soil conditions. The adoption of agricultural practices with higher yield will also allow better distribution of income among small farmers. New species of genetically modified plants will soon be available and society should be capable of making decisions in an objective and well-informed manner, through collegiate bodies that are qualified in all aspects of biosafety and environmental impact.
PLOS ONE | 2012
Priscila Oliveira de Giuseppe; Nadia Helena Martins; Andreia Navarro Meza; Camila R. Santos; Humberto M. Pereira; Mario Tyago Murakami
The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this enzyme.
Biophysical Reviews | 2017
Napoleão Fonseca Valadares; Humberto M. Pereira; Ana Paula U. Araújo; Richard C. Garratt
Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader’s attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.