Humio Ichimura
Ibaraki University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Humio Ichimura.
Journal of Pure and Applied Algebra | 2004
Humio Ichimura
Abstract Gomez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree over a number field to have a relative normal integral basis (NIB for short). We generalize this result for a tame cyclic Kummer extension of arbitrary degree, and then prove the following “capitulation” theorem for the Galois module structure of rings of integers. Let m⩾2 be an integer, and F a number field. Then, there exists a finite extension L/F depending on m and F such that for any abelian extension K/F of exponent dividing m, the pushed-up extension LK/L has a NIB.
Mathematica Slovaca | 2009
Humio Ichimura
AbstractFor an odd prime number p and an integer n ≥ 0, let hn be the class number of the pn+1st cyclotomic field Q(
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 2003
Humio Ichimura
Experimental Mathematics | 2018
Shoichi Fujima; Humio Ichimura
\zeta _{p^{n + 1} }
Finite Fields and Their Applications | 2004
Humio Ichimura
Nagoya Mathematical Journal | 1985
Humio Ichimura
). It is known that when p = 3 or 5, hn is odd for all n ≥ 0. We prove that the same holds also when p = 7.
International Journal of Number Theory | 2014
Humio Ichimura; Shoichi Nakajima; Hiroki Sumida-Takahashi
AbstractWe prove that the class number of the real quadratic field
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 2006
Humio Ichimura
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 1996
Humio Ichimura
{\mathbb{Q}}\left( {\sqrt {a^{2n} + 4} } \right)
International Journal of Mathematics | 1996
Humio Ichimura; Hiroki Sumida