Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hung-Chun Yu is active.

Publication


Featured researches published by Hung-Chun Yu.


American Journal of Human Genetics | 2013

An X-Linked Cobalamin Disorder Caused by Mutations in Transcriptional Coregulator HCFC1

Hung-Chun Yu; Jennifer L. Sloan; Gunter Scharer; Alison Brebner; Anita M. Quintana; Nathan P. Achilly; Irini Manoli; Curtis R. Coughlin; Elizabeth A. Geiger; Una Schneck; David Watkins; Terttu Suormala; Johan L.K. Van Hove; Brian Fowler; Matthias R. Baumgartner; David S. Rosenblatt; Charles P. Venditti; Tamim H. Shaikh

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Nature Genetics | 2017

Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites

Tao Long; Michael A. Hicks; Hung-Chun Yu; William H. Biggs; Ewen F. Kirkness; Cristina Menni; Jonas Zierer; Kerrin S. Small; Massimo Mangino; Helen Messier; Suzanne Brewerton; Yaron Turpaz; Brad A. Perkins; Anne M. Evans; Luke A.D. Miller; Lining Guo; C. Thomas Caskey; Nicholas J. Schork; Chad Garner; Tim D. Spector; J. Craig Venter; Amalio Telenti

Genetic factors modifying the blood metabolome have been investigated through genome-wide association studies (GWAS) of common genetic variants and through exome sequencing. We conducted a whole-genome sequencing study of common, low-frequency and rare variants to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults. We focused the analysis on 644 metabolites with consistent levels across three longitudinal data collections. Genetic sequence variations at 101 loci were associated with the levels of 246 (38%) metabolites (P ≤ 1.9 × 10−11). We identified 113 (10.7%) among 1,054 unrelated individuals in the cohort who carried heterozygous rare variants likely influencing the function of 17 genes. Thirteen of the 17 genes are associated with inborn errors of metabolism or other pediatric genetic conditions. This study extends the map of loci influencing the metabolome and highlights the importance of heterozygous rare variants in determining abnormal blood metabolic phenotypes in adults.


Journal of Medical Genetics | 2015

Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder

Curtis R. Coughlin; Gunter Scharer; Marisa W. Friederich; Hung-Chun Yu; Elizabeth A. Geiger; Geralyn Creadon-Swindell; Abigail Collins; Arnaud Vanlander; Rudy Van Coster; Christopher A. Powell; Michael A. Swanson; Michal Minczuk; Johan L.K. Van Hove; Tamim H. Shaikh

Background Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. Methods and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Conclusions Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.


American Journal of Medical Genetics Part A | 2014

An individual with blepharophimosis–ptosis–epicanthus inversus syndrome (BPES) and additional features expands the phenotype associated with mutations in KAT6B

Hung-Chun Yu; Elizabeth A. Geiger; Livija Medne; Elaine H. Zackai; Tamim H. Shaikh

Blepharophimosis–ptosis–epicanthus inversus syndrome (BPES) is an autosomal dominant disorder caused by mutations in FOXL2. We identified an individual with BPES and additional phenotypic features who did not have a FOXL2 mutation. We used whole exome sequencing to identify a de novo mutation in KAT6B (lysine acetyltransferase 6B) in this individual. The mutation was a 2‐bp insertion leading to a frameshift which resulted in a premature stop codon. The resulting truncated protein does not have the C‐terminal serine/methionine transcription activation domain necessary for interaction with other transcriptional and epigenetic regulators. This mutation likely has a dominant‐negative or gain‐of‐function effect, similar to those observed in other genetic disorders resulting from KAT6B mutations, including Say–Barber–Biesecker–Young–Simpson (SBBYSS) and genitopatellar syndrome (GTPTS). Thus, our subjects phenotype broadens the spectrum of clinical findings associated with mutations in KAT6B. Furthermore, our results suggest that individuals with BPES without a FOXL2 mutation should be tested for KAT6B mutations. The transcriptional and epigenetic regulation mediated by KAT6B appears crucial to early developmental processes, which when perturbed can lead to a wide spectrum of phenotypic outcomes.


American Journal of Medical Genetics Part A | 2015

Compound heterozygosity for a frame shift mutation and a likely pathogenic sequence variant in the planar cell polarity—ciliogenesis gene WDPCP in a girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas

Jonathan Saari; Mark A. Lovell; Hung-Chun Yu; Gary Bellus

We report on a young girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas. These features are similar to those reported in individuals with variant forms of orofaciodigital syndrome known as congenital heart defects, hamartomas of the tongue and polysyndactly (CHDHTP: OMIM 217085) [Örstavik et al., 1992] and orocardiodigital syndrome [Digilio et al., 1996]. Whole exome sequencing revealed that she is a compound heterozygote for a frame shift mutation and a likely pathogenic sequence variant in WDPCP, a gene that regulates planar cell polarity and ciliogenesis. Results of genotyping in her parents and unaffected siblings were consistent with autosomal recessive inheritance of the mutation and the WDPCP variant. These results suggest that disruption of planar cell polarity and ciliogenesis may result in this unusual form of orofaciodigital syndrome.


American Journal of Human Genetics | 2018

Identification of Misclassified ClinVar Variants via Disease Population Prevalence

Naisha Shah; Ying-Chen Claire Hou; Hung-Chun Yu; Rachana Sainger; C. Thomas Caskey; J. Craig Venter; Amalio Telenti

There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.


Human Molecular Genetics | 2017

Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities

Anita M. Quintana; Hung-Chun Yu; Alison Brebner; Mihaela Pupavac; Elizabeth A. Geiger; Abigail Watson; Victoria L. Castro; Warren Cheung; Shu-Huang Chen; David Watkins; Tomi Pastinen; Flemming Skovby; Bruce Appel; David S. Rosenblatt; Tamim H. Shaikh

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckels cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.


bioRxiv | 2016

The human functional genome defined by genetic diversity

Julia di Iulio; István Bartha; Emily S. W. Wong; Hung-Chun Yu; Michael A. Hicks; Naisha Shah; Victor Lavrenko; Ewen F. Kirkness; Martin M. Fabani; Dongchan Yang; Inkyung Jung; Williams Biggs; Bing Ren; J. Craig Venter; Amalio Telenti

Large scale efforts to sequence whole human genomes provide extensive data on the non-coding portion of the genome. We used variation information from 11,257 human genomes to describe the spectrum of sequence conservation in the population. We established the genome-wide variability for each nucleotide in the context of the surrounding sequence in order to identify departure from expectation at the population level (context-dependent conservation). We characterized the population diversity for functional elements in the genome and identified the coordination of conserved sequences of distal and cis enhancers, chromatin marks, promoters, coding and intronic regions. The most context-dependent conserved regions of the genome are associated with unique functional annotations and a genomic organization that spreads up to one megabase. Importantly, these regions are enriched by over 100-fold of non-coding pathogenic variants. This analysis of human genetic diversity thus provides a detailed view of sequence conservation, functional constraint and genomic organization of the human genome. Specifically, it identifies highly conserved non-coding sequences that are not captured by analysis of interspecies conservation and are greatly enriched in disease variants.


Cold Spring Harb Mol Case Stud | 2016

Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion, suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy

Hung-Chun Yu; Curtis R. Coughlin; Elizabeth A. Geiger; Blake J. Salvador; Ellen Roy Elias; Jean L. Cavanaugh; Kathryn C. Chatfield; Shelley D. Miyamoto; Tamim H. Shaikh

Restrictive cardiomyopathy (RCM) is a rare cause of heart muscle disease with the highest mortality rate among cardiomyopathy types. The etiology of RCM is poorly understood, although genetic causes have been implicated, and syndromic associations have been described. Here, we describe a patient with an atrial septal defect and restrictive cardiomyopathy along with craniofacial anomalies and intellectual disabilities. Initial screening using chromosomal microarray analysis (CMA) identified a maternally inherited 2q13 microdeletion. The patient had many of the features reported in previous cases with the recurrent 2q13 microdeletion syndrome. However, the inheritance of the microdeletion from an unaffected mother combined with the low incidence (10%) and milder forms of cardiac defects in previously reported cases made the clinical significance of the CMA results unclear. Whole-exome sequencing (WES) with trio-based analysis was performed and identified a paternally inherited TMEM87B mutation (c.1366A>G, p.Asn456Asp) in the patient. TMEM87B, a highly conserved, transmembrane protein of currently unknown function, lies within the critical region of the recurrent 2q13 microdeletion syndrome. Furthermore, a recent study had demonstrated that depletion of TMEM87B in zebrafish embryos affected cardiac development and led to cardiac hypoplasia. Thus, by combining CMA and WES, we potentially uncover an autosomal-recessive disorder characterized by a severe cardiac phenotype caused by mutations in TMEM87B. This study expands the spectrum of phenotypes associated with the recurrent 2q13 microdeletion syndrome and also further suggests the role of TMEM87B in its etiology, especially the cardiac pathology.


Tremor and other hyperkinetic movements (New York, N.Y.) | 2014

Evaluating Familial Essential Tremor with Novel Genetic Approaches: Is it a Genotyping or Phenotyping Issue?

Pedro Gonzalez-Alegre; Jorge Di Paola; Kai Wang; Shay Fabbro; Hung-Chun Yu; Tamim H. Shaikh; Benjamin W. Darbro; Alexander G. Bassuk

Background Essential tremor is a common movement disorder with a strong heritable component. Large families with inherited forms of essential tremor have undergone genetic analyses by different approaches. However, our knowledge of genetic variants unequivocally linked to essential tremor is remarkably limited. Several explanations have been put forth to explain this challenge, including the possibility of mutations in non-coding areas of the genome. Methods We encountered a family with highly penetrant, autosomal dominant tremor. We hypothesized that, if a single coding gene mutation was responsible for the phenotype, novel genetic tools would allow us to identify it. We employed single nucleotide polymorphism (SNP) arrays in 17 members of this family followed by next generation whole-exome sequencing in five affected subjects. Results We did not identify any copy number variant or mutation that segregated with the disease phenotype. Discussion This study emphasizes the remarkably challenging field of tremor genetics and indicates that future studies should perhaps shift to analysis of the non-coding genome.

Collaboration


Dive into the Hung-Chun Yu's collaboration.

Top Co-Authors

Avatar

Tamim H. Shaikh

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Geiger

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

J. Craig Venter

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Amalio Telenti

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Curtis R. Coughlin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan L.K. Van Hove

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael A. Hicks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Naisha Shah

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

C. Thomas Caskey

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge