Hung-Jin Huang
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hung-Jin Huang.
BioMed Research International | 2014
Yung An Tsou; Hung-Jin Huang; Tang-Chuan Wang; Chih-Jaan Tai; Chuan-Mu Chen; Calvin Yu-Chian Chen
The recurrent sinonasal inverted papilloma (IP) could be transformed to sinonasal squamous cell carcinoma. We use protein expression patterns by immunohistochemical method to see whether the expression of p53, p16, p21, and p27 belongs to cell-cycle-regulators and PCNA (proliferating cell nuclear antigen) and Ki-67 the proliferation markers in sixty patients with sinonasal inverted papilloma, and 10 of them with squamous cell carcinoma transformation. Significantly elevated levels of Ki-67, p27, and PCNA in IP with squamous cell carcinoma transformation of sinonasal tract compared with inverted papilloma were revealed. No variation of p16, p21, PLUNC (palate, lung, and nasal epithelium clone protein) and p53 expression was correlated to sinonasal IP malignant transformation by multivariate survey. However, we found elevated PLUNC expression in IPs with multiple recurrences. Finally, we found that PCNA, p27 may interact with CDK1 which promote IP cell proliferation and correlate to sinonasal squamous cell carcinoma. Ki-67 could work throughout the cell cycles to cause malignant transformation. In conclusion, this is a first study showing the correlation of Ki-67, PCNA interacted with CDK1 might lead to malignant transformation. Elevated PLUNC expression in the sinonasal IPs was related to multiple recurrences in human.
BioMed Research International | 2014
Hung-Jin Huang; Hsin-Yi Chen; Cheng Chun Lee; Calvin Yu-Chian Chen
Apolipoprotein E4 (Apo E4) is the major genetic risk factor in the causation of Alzheimers disease (AD). In this study we utilize virtual screening of the worlds largest traditional Chinese medicine (TCM) database and investigate potential compounds for the inhibition of ApoE4. We present the top three TCM candidates: Solapalmitine, Isodesacetyluvaricin, and Budmunchiamine L5 for further investigation. Dynamics analysis and molecular dynamics (MD) simulation were used to simulate protein-ligand complexes for observing the interactions and protein variations. Budmunchiamine L5 did not have the highest score from virtual screening; however, the dynamics pose is similar to the initial docking pose after MD simulation. Trajectory analysis reveals that Budmunchiamine L5 was stable over all simulation times. The migration distance of Budmunchiamine L5 illustrates that docked ligands are not variable from the initial docked site. Interestingly, Arg158 was observed to form H-bonds with Budmunchiamine L5 in the docking pose and MD snapshot, which indicates that the TCM compounds could stably bind to ApoE4. Our results show that Budmunchiamine L5 has good absorption, blood brain barrier (BBB) penetration, and less toxicity according to absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction and could, therefore, be safely used for developing novel ApoE4 inhibitors.
BioMed Research International | 2014
Hung-Jin Huang; Cheng Chun Lee; Calvin Yu-Chian Chen
Deficiency or loss of function of Retinoblastoma-associated proteins (RbAp48) is related with Alzheimers disease (AD), and AD disease is associated with age-related memory loss. During normal function, RbAp48 forms a complex with the peptide FOG-1 (friend of GATA-1) and has a role in gene transcription, but an unstable complex may affect the function of RbAp48. This study utilizes the worlds largest traditional Chinese medicine (TCM) database and virtual screening to provide potential compounds for RbAp48 binding. A molecular dynamics (MD) simulation was employed to understand the variations after protein-ligand interaction. FOG1 was found to exhibit low stability after RbAp48 binding; the peptide displayed significant movement from the initial docking position, a phenomenon which matched the docking results. The protein structure of the other TCM candidates was not variable during MD simulation and had a greater stable affinity for RbAp48 binding than FOG1. Our results reveal that the protein structure does not affect ligand binding, and the top three TCM candidates Bittersweet alkaloid II, Eicosandioic acid, and Perivine might resolve the instability of the RbAp48-FOG1 complex and thus be used in AD therapy.
Evidence-based Complementary and Alternative Medicine | 2014
Yung An Tsou; Hung-Jin Huang; Wesley Wen-Yang Lin; Calvin Yu-Chian Chen
The innate immune system is the first line in the defense system and prevents the body from further bacteria, virus, or fungal infections. Most of the innate immune system is relevant to mucosa immunity. Lactotransferrin is secreted from the human mammal breast duct epithelial tissue and strengthens infant immunity to defense with regard to outward pathogens. Splunc-1 is also an innate material secreted from the soft palate, lung, nasal cavity epithelium, and mucosa. It helps with mucosa defense against bacterial, virus, and even fungus. LPS is the main etiology of Gram-negative bacilla infection source. And studies of lactoferricin and slpunc-1 both can combine with LPS and subsequently cause insults to the mucosa. Although, we know that both of them partake in an important role in innate immunity, we do not know the effects when they work together. In this study, we just overview silicon stimulation to examine the combination of Lactoferricin and Splunc-1 and the effect with regard to LPS.
Evidence-based Complementary and Alternative Medicine | 2014
Hung-Jin Huang; Tung Ti Chang; Hsin-Yi Chen; Calvin Yu-Chian Chen
Superoxide dismutase type 1 (SOD1) mutations cause protein aggregation and decrease protein stability, which are linked to amyotrophic lateral sclerosis (ALS) disease. This research utilizes the worlds largest traditional Chinese medicine (TCM) database to search novel inhibitors of mutant SOD1, and molecular dynamics (MD) simulations were used to analyze the stability of protein that interacted with docked ligands. Docking results show that hesperidin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) have high affinity to mutant SOD1 and then dopamine. For MD simulation analysis, hesperidin and THSG displayed similar value of RMSD with dopamine, and the migration analysis reveals stable fluctuation at the end of MD simulation time. Interestingly, distance between the protein and ligand has distinct difference, and hesperidin changes the position from initial binding site to the other place. In flexibility of residues analysis, the secondary structure among all complexes does not change, indicating that the structure are not affect ligand binding. The binding poses of hesperidin and THSG are similar to dopamine after molecular simulation. Our result indicated that hesperidin and THSG might be potential lead compound to design inhibitors of mutant SOD1 for ALS therapy.
Evidence-based Complementary and Alternative Medicine | 2014
Yung An Tsou; Hung-Jin Huang; Wesley Wen-Yang Lin; Calvin Yu-Chian Chen
Chronic obstructive pulmonary disease (COPD) is a chronic obstructive lung disease and is frequently found in well-developed countries due to the issue of aging populations. Not all forms of medical treatment are unable to return a patients limited pulmonary function back to normal and eventually they could require a lung transplant. At this time, COPD is the leading cause of death in the world. Studies surveying I-kappa-B-kinase beta (IKK2) are very relevant to the occurrence and deterioration of the condition COPD. The sinapic acid-4-O-sulfate, kaempferol, and alpha-terpineol were found to be IKK2 inhibitors and helped prevent COPD occurrence and worsening according to a screening of the traditional Chinese medicine (TCM) database. The protein-ligand interaction of these three compounds with regard to IKK2 was also done by molecular dynamics. The docking poses, hydrogen bond variation, and hydrophobic interactions found Asp103 and Lys106 are crucial to IKK2 binding areas for IKK2 inhibition. Finally, we found the three compounds that have an equally strong effect in terms of IKK2 binding proven by the TCM database and perhaps these may be an alternative treatment for COPD in the future.
Evidence-based Complementary and Alternative Medicine | 2014
Ya-Li Hsiao; Pei-Chun Chang; Hung-Jin Huang; Chia-Chen Kuo; Calvin Yu-Chian Chen
Acute lymphoblastic leukemia (ALL) is a cancer that immature white blood cells continuously overproduce in the bone marrow. These cells crowd out normal cells in the bone marrow bringing damage and death. Methotrexate (MTX) is a drug used in the treatment of various cancer and autoimmune diseases. In particular, for the treatment of childhood acute lymphoblastic leukemia, it had significant effect. MTX competitively inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the tetrahydrofolate synthesis so as to inhibit purine synthesis. In addition, its downstream metabolite methotrexate polyglutamates (MTX-PGs) inhibit the thymidylate synthase (TS). Therefore, MTX can inhibit the synthesis of DNA. However, MTX has cytotoxicity and neurotoxin may cause multiple organ injury and is potentially lethal. Thus, the lower toxicity drugs are necessary to be developed. Recently, diseases treatments with Traditional Chinese Medicine (TCM) as complements are getting more and more attention. In this study, we attempted to discover the compounds with drug-like potential for ALL treatment from the components in TCM. We applied virtual screen and QSAR models based on structure-based and ligand-based studies to identify the potential TCM component compounds. Our results show that the TCM compounds adenosine triphosphate, manninotriose, raffinose, and stachyose could have potential to improve the side effects of MTX for ALL treatment.
BioMed Research International | 2014
Hung-Jin Huang; Cheng Chun Lee; Calvin Yu-Chian Chen
The β-site APP cleaving enzyme 1 (BACE1) is an important target for causing Alzheimers disease (AD), due to the brain deposition peptide amyloid beta (Aβ) require cleavages of amyloid precursor protein (APP) by BACE1 and γ-secretase, but treatments of AD still have side effect in recent therapy. This study utilizes the world largest traditional Chinese medicine (TCM) database and database screening to provide potential BACE1 inhibited compound. Molecular dynamics (MD) simulation was carried out to observe the dynamics structure after ligand binding. We found that Triptofordin B1 has less toxicity than pyrimidine analogue, which has more potent binding affinity with BACE1. For trajectory analysis, all conformations are tending to be stable during 5000 ps simulation time. In dynamic protein validation, the residues of binding region are still stable after MD simulation. For snapshot comparison, we found that Triptofordin B1 could reduce the binding cavity; the results reveal that Triptofordin B1 could bind to BACE1 and better than control, which could be used as potential lead drug to design novel BACE1 inhibitor for AD therapy.
BioMed Research International | 2014
Chih-Jie Shen; Yung An Tsou; Hsiao-Ling Chen; Hung-Jin Huang; Shinn-Chih Wu; Winston T.K. Cheng; Calvin Yu-Chian Chen; Chuan-Mu Chen
Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN) is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt) may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.
Evidence-based Complementary and Alternative Medicine | 2014
Tzu-Chieh Hung; Kuen-Bao Chen; Hung-Jin Huang; Calvin Yu-Chian Chen
The acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a serious world-wide problem because of this diseases rapid propagation and incurability. Recent research has pointed out that the C-C chemokine receptor type 5 (CCR5) is an important target for HIV infection. The traditional Chinese medicine (TCM) database (http://tcm.cmu.edu.tw/) has been screened for molecular compounds that, by simulating molecular docking and molecular dynamics, may protect CCR5 against HIV. Saussureamine C, 5-hydroxy-L-tryptophan, and abrine are selected based on the docking score being higher than Maraviroc and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond variations, this research surmises TRP86, TYR108, GLN194, TYR251, and GLU283 are the main regions of important amino acids in CCR5. In addition to the detection of TCM compound efficacy, we suggest saussureamine C is better than the others for maintaining protein composition during protein-ligand interaction, based on the structural variation.