Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hung Li is active.

Publication


Featured researches published by Hung Li.


Nature Genetics | 2000

A mouse model for spinal muscular atrophy

Hsiu-Mei Hsieh-Li; Jan Gowth Chang; Yuh Jyh Jong; Mei Hsiang Wu; Nancy M. Wang; Chang Hai Tsai; Hung Li

The survival motor neuron gene is present in humans in a telomeric copy, SMN1, and several centromeric copies, SMN2. Homozygous mutation of SMN1 is associated with proximal spinal muscular atrophy (SMA), a severe motor neuron disease characterized by early childhood onset of progressive muscle weakness. To understand the functional role of SMN1 in SMA, we produced mouse lines deficient for mouse Smn and transgenic mouse lines that expressed human SMN2. Smn−/− mice died during the peri-implantation stage. In contrast, transgenic mice harbouring SMN2 in the Smn−/− background showed pathological changes in the spinal cord and skeletal muscles similar to those of SMA patients. The severity of the pathological changes in these mice correlated with the amount of SMN protein that contained the region encoded by exon 7. Our results demonstrate that SMN2 can partially compensate for lack of SMN1. The variable phenotypes of Smn−/−SMN2 mice reflect those seen in SMA patients, providing a mouse model for this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Treatment of spinal muscular atrophy by sodium butyrate.

Jan Gowth Chang; Hsiu-Mei Hsieh-Li; Yuh Jyh Jong; Nancy M. Wang; Chang Hai Tsai; Hung Li

Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by degeneration of the anterior horn cells of the spinal cord, leading to muscular paralysis with muscular atrophy. No effective treatment of this disorder is presently available. Studies of the correlation between disease severity and the amount of survival motor neuron (SMN) protein have shown an inverse relationship. We report that sodium butyrate effectively increases the amount of exon 7-containing SMN protein in SMA lymphoid cell lines by changing the alternative splicing pattern of exon 7 in the SMN2 gene. In vivo, sodium butyrate treatment of SMA-like mice resulted in increased expression of SMN protein in motor neurons of the spinal cord and resulted in significant improvement of SMA clinical symptoms. Oral administration of sodium butyrate to intercrosses of heterozygous pregnant knockout-transgenic SMA-like mice decreased the birth rate of severe types of SMA-like mice, and SMA symptoms were ameliorated for all three types of SMA-like mice. These results suggest that sodium butyrate may be an effective drug for the treatment of human SMA patients.


Circulation | 2004

Functional Recovery of Stroke Rats Induced by Granulocyte Colony-Stimulating Factor–Stimulated Stem Cells

Woei Cherng Shyu; Shinn Zong Lin; Hui I. Yang; Yi Shiuan Tzeng; Cheng Yoong Pang; Pao Sheng Yen; Hung Li

Background—Stroke is a leading cause of death and disability worldwide; however, no effective treatment currently exists. Methods and Results—Rats receiving subcutaneous granulocyte colony-stimulating factor (G-CSF) showed less cerebral infarction, as evaluated by MRI, and improved motor performance after right middle cerebral artery ligation than vehicle-treated control rats. Subcutaneous administration of G-CSF enhanced the availability of circulating hematopoietic stem cells to the brain and their capacity for neurogenesis and angiogenesis in rats with cerebral ischemia. Conclusions—G-CSF induced increases in bone marrow cell mobilization and targeting to the brain, reducing the volume of cerebral infarction and improving neural plasticity and vascularization.


Canadian Medical Association Journal | 2006

Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial

Woei Cherng Shyu; Shinn Zong Lin; Chau Chin Lee; Demeral David Liu; Hung Li

Background: Because granulocyte colony-stimulating factor (G-CSF) has anti-inflammatory and neuroprotective properties and is known to mobilize stem cells, it may be useful in the treatment of acute ischemic stroke. We sought to examine the feasibility, safety and efficacy of using G-CSF to treat acute stroke. Methods: We conducted a randomized, blinded controlled trial involving 10 patients with acute cerebral infarction (middle cerebral artery territory as documented by the admission MRI) who presented within 7 days of onset and whose scores on the National Institutes of Health Stroke Scale (NIHSS) were between 9 and 20. Patients were assigned to either G-CSF therapy or usual care. The G-CSF group (n = 7) received subcutaneous G-CSF injections (15 μg/kg per day) for 5 days. The primary outcome was percentage changes between baseline and 12-month follow-up in mean group scores on 4 clinical scales: the NIHSS, European Stroke Scale (ESS), ESS Motor Subscale (EMS) and Barthel Index (BI). We also assessed neurologic functioning using PET to measure cerebral uptake of fluorodeoxyglucose in the cortical areas surrounding the ischemic core. Results: All of the patients completed the 5-day course of treatment, and none were lost to follow-up. No severe adverse effects were seen in patients receiving G-CSF. There was greater improvement in neurologic functioning between baseline and 12-month follow-up in the G-CSF group than in the control group (NIHSS: 59% change in the mean G-CSF group score v. 36% in the mean control group score, ESS: 33% v. 20%, EMS: 106% v. 58%, BI: 120% v. 60%). Although at 12 months there was no difference between the 2 groups in cerebral uptake of fluorodeoxyglucose in the ischemic core, uptake in the area surrounding the core was significantly improved in the G-CSF group compared with the control group. There was positive correlation between metabolic activity and EMS score following simple linear correlation analysis. Interpretation: Our preliminary evidence suggests that using G-CSF as therapy for acute stroke is safe and feasible and leads to improved neurologic outcomes.


Blood | 2011

Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression

Yi-Shiuan Tzeng; Hung Li; Yuan-Lin Kang; Wen-Cheng Chen; Wei-Cheng Cheng; Dar-Ming Lai

The C-X-C-type chemokine Cxcl12, also known as stromal cell-derived factor-1, plays a critical role in hematopoiesis during fetal development. However, the functional requirement of Cxcl12 in the adult hematopoietic stem/progenitor cell (HSPC) regulation was still unclear. In this report, we developed a murine Cxcl12 conditional deletion model in which the target gene can be deleted at the adult stage. We found that loss of stroma-secreted Cxcl12 in the adult led to expansion of the HSPC population as well as a reduction in long-term quiescent stem cells. In Cxcl12-deficient bone marrow, HSPCs were absent along the endosteal surface, and blood cell regeneration occurred predominantly in the perisinusoidal space after 5-fluorouracil myelosuppression challenge. Our results indicate that Cxcl12 is required for HSPC homeostasis regulation and is an important factor for osteoblastic niche organization in adult stage bone marrow.


Neurobiology of Disease | 2007

Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model

Dah Ching Ding; Woei Cherng Shyu; Ming Fu Chiang; Shinn Zong Lin; Ying Chen Chang; Hsiao Jung Wang; Ching Yuan Su; Hung Li

Neuroplasticity subsequent to functional angiogenesis is an important goal for cell-based therapy of ischemic neural tissues. At present, the cellular and molecular mechanisms involved are still not well understood. In this study, we isolated mesenchymal stem cells (MSCs) from Whartons jelly (WJ) to obtain clonally expanded human umbilical cord-derived mesenchymal stem cells (HUCMSCs) with multilineage differentiation potential. Experimental rats receiving intracerebral HUCMSC transplantation showed significantly improved neurological function compared to vehicle-treated control rats. Cortical neuronal activity, as evaluated by proton MR spectroscopy (1H-MRS), also increased considerably in the transplantation group. Transplanted HUCMSCs migrated towards the ischemic boundary zone and differentiated into glial, neuronal, doublecortin+, CXCR4+, and vascular endothelial cells to enhance neuroplasticity in the ischemic brain. In addition, HUCMSC transplantation promoted the formation of new vessels to increase local cortical blood flow in the ischemic hemisphere. Modulation by stem cell-derived macrophage/microglial interactions, and increased beta1-integrin expression, might enhance this angiogenic architecture within the ischemic brain. Inhibition of beta1-integrin expression blocked local angiogenesis and reduced recovery from neurological deficit. In addition, significantly increased modulation of neurotrophic factor expression was also found in the HUCMSC transplantation group. In summary, regulation of beta1-integrin expression plays a critical role in the plasticity of the ischemic brain after the implantation of HUCMSCs.


The Journal of Neuroscience | 2006

Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing β1 integrin-mediated angiogenesis in chronic stroke rats

Woei Cherng Shyu; Shinn Zong Lin; Ming Fu Chiang; Ching Yuan Su; Hung Li

Although stem cell-based treatments for stroke and other neurodegenerative diseases have advanced rapidly, there are still few clinical treatments available. In this study, rats receiving intracerebral peripheral blood hematopoietic stem cell (CD34+) (PBSC) transplantation showed much more improvement in neurological function after chronic cerebral ischemia in comparison with vehicle-treated control rats. Using laser-scanning confocal microscopy, implanted PBSCs were seen to differentiate into glial cells [GFAP+ (glial fibrillary acidic protein-positive)], neurons [Nestin+, MAP-2+ (microtubule-associated protein 2-positive), Neu-N+ (neuronal nuclear antigen-positive)], and vascular endothelial cells [vWF+ (von Willebrand factor-positive)], thereby enhancing neuroplastic effects in the ischemic brain. Cortical neuronal activity, as evaluated by 1H-MRS (proton magnetic resonance spectroscopy), also increased considerably in PBSC-treated rats compared with a vehicle-treated control group. In addition, PBSC implantation promoted the formation of new vessels, thereby increasing the local cortical blood flow in the ischemic hemisphere. These observations may be explained by the involvement of stem cell-derived macrophage/microglial cells, and β1 integrin expression, which might enhance this angiogenic architecture over the ischemic brain. Furthermore, quantitative reverse transcription-PCR analysis showed significantly increased modulation of neurotrophic factor expression in the ischemic hemisphere of the PBSC-transplanted rats compared with vehicle-treated control rats. Thus, intracerebral PBSC transplantation might have potential as a therapeutic strategy for treating cerebrovascular diseases.


Journal of Pharmacology and Experimental Therapeutics | 2007

Stromal cell-derived factor-1α promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats

Woei Cherng Shyu; Shinn Zong Lin; Pao Sheng Yen; Ching Yuan Su; Der-Cherng Chen; Hsiao Jung Wang; Hung Li

Stromal cell-derived factor (SDF)-1α is involved in the trafficking of hematopoietic stem cells from bone marrow to peripheral blood, and its expression is increased in the penumbra of the ischemic brain. In this study, SDF-1α was found to exert neuroprotective effects that rescued primary cortical cultures from H2O2 neurotoxicity, and to modulate neurotrophic factor expression. Rats receiving intracerebral administration of SDF-1α showed less cerebral infarction due to up-regulation of antiapoptotic proteins, and they had improved motor performance. SDF-1α injection enhanced the targeting of bone marrow (BM)-derived cells to the injured brain, as demonstrated in green fluorescent protein-chimeric mice with cerebral ischemia. In addition, increased vascular density in the ischemic cortex of SDF-1α-treated rats enhanced functional local cerebral blood flow. In summary, intracerebral administration of SDF-1α resulted in neuroprotection against neurotoxic insult, and it induced increased BM-derived cell targeting to the ischemic brain, thereby reducing the volume of cerebral infarction and improving neural plasticity.


The Journal of Neuroscience | 2005

Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model

Woei Cherng Shyu; Shinn Zong Lin; Ming Fu Chiang; Dah Ching Ding; Kuo Wei Li; Shih Fen Chen; Hui I. Yang; Hung Li

Prion diseases are induced by pathologically misfolded prion protein (PrPSc), which recruit normal sialoglycoprotein PrPC by a template-directed process. In this study, we investigated the expression of PrPC in a rat model of cerebral ischemia to more fully understand its physiological role. Immunohistochemical analysis demonstrated that PrPC-immunoreactive cells increased significantly in the penumbra of ischemic rat brain compared with the untreated brain. Western blot analysis showed that PrPC protein expression increased in ischemic brain tissue in a time-dependent manner. In addition, PrPC protein expression was seen to colocalize with neuron, glial, and vascular endothelial cells in the penumbric region of the ischemic brain. Overexpression of PrPC by injection of rAd (replication-defective recombinant adenoviral)-PGK (phosphoglycerate kinase)-PrPC-Flag into ischemic rat brain improved neurological behavior and reduced the volume of cerebral infarction, which is supportive of a role for PrPC in the neuroprotective adaptive cellular response to ischemic lesions. Concomitant upregulation of PrPC and activated extracellular signal-regulated kinase (ERK1/2) under hypoxia–reoxygenation in primary cortical cultures was shown to be dependent on ERK1/2 phosphorylation. During hypoxia–reoxygenation, mouse neuroblastoma cell line N18 cells transfected with luciferase rat PrPC promoter reporter constructs, containing the heat shock element (HSE), expressed higher luciferase activities (3- to 10-fold) than those cells transfected with constructs not containing HSE. We propose that HSTF-1 (hypoxia-activated transcription factor), phosphorylated by ERK1/2, may in turn interact with HSE in the promoter of PrPC resulting in gene expression of the prion gene. In summary, we conclude that upregulation of PrPC expression after cerebral ischemia and hypoxia exerts a neuroprotective effect on injured neural tissue. This study suggests that PrPC has physiological relevance to cerebral ischemic injury and could be useful as a therapeutic target for the treatment of cerebral ischemia.


Cell Transplantation | 2007

Regenerative therapy for stroke.

Ying Chao Chang; Woei Cherng Shyu; Shinn Zong Lin; Hung Li

Stroke remains a leading cause of death and disability worldwide. An increasing number of animal studies and preclinical trials have, however, provided evidence that regenerative cell-based therapies can lead to functional recovery in stroke patients. Stem cells can differentiate into neural lineages to replace lost neurons. Moreover, they provide trophic support to tissue at risk in the penumbra surrounding the infarct area, enhance vasculogenesis, and help promote survival, migration, and differentiation of the endogenous precursor cells after stroke. Stem cells are highly migratory and seem to be attracted to areas of brain pathology such as ischemic regions. The pathotropism may follow the paradigm of stem cell homing to bone marrow and leukocytes migrating to inflammatory tissue. The molecular signaling therefore may involve various chemokines, cytokines, and integrins. Among these, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling is required for the interaction of stem cells and ischemia-damaged host tissues. SDF-1 is secreted primarily by bone marrow fibroblasts and is required for BMSC homing to bone marrow. Overexpression of SDF-1 in ischemic tissues has been found to enhance stem cell recruitment from peripheral blood and to induce neoangiogenesis. Furthermore, SDF-1 expression in the lesioned area peaked within 7 days postischemia, in concordance with the time window of G-CSF therapy for stroke. Recent data have shown that SDF-1 expression is directly proportional to reduced tissue oxygen tension. SDF-1 gene expression is regulated by hypoxic-inducible factor-1 (HIF-1), a hypoxia-dependent stabilization transcription factor. Thus, ischemic tissue may recruit circulating progenitors regulated by hypoxia through differential expression of HIF-1α and SDF-1. In addition to SDF-1, β2-integrins also play a role in the homing of hematopoietic progenitor cells to sites of ischemia and are critical for their neovascularization capacity. In our recent report, increased expression of β1-integrins apparently contributed to the local neovasculization of the ischemic brain as well as its functional recovery. Identification of the molecular pathways involved in stem cell homing into the ischemic areas could pave the way for the development of new treatment regimens, perhaps using small molecules, designed to enhance endogeneous mobilization of stem cells in various disease states, including chronic stroke and other neurodegenerative diseases. For maximal functional recovery, however, regenerative therapy may need to follow combinatorial approaches, which may include cell replacement, trophic support, protection from oxidative stress, and the neutralization of the growth-inhibitory components for endogenous neuronal stem cells.

Collaboration


Dive into the Hung Li's collaboration.

Top Co-Authors

Avatar

Hsiu Mei Hsieh-Li

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Ming Fu Chiang

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Kai Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yih Jing Lee

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge