Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hunjoo Ha is active.

Publication


Featured researches published by Hunjoo Ha.


Journal of The American Society of Nephrology | 2005

Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells

Dong Young Rhyu; Yanqiang Yang; Hunjoo Ha; Geun Taek Lee; Jae Sook Song; Soo-Taek Uh; Hi Bahl Lee

Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-β1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-β1–induced EMT. Because reactive oxygen species (ROS) are involved in TGF-β1 signaling and are upstream signaling molecules to MAPK, this study examined the role of ROS in TGF-β1–induced MAPK activation and EMT in rat proximal tubular epithelial cells. Growth-arrested and synchronized NRK-52E cells were stimulated with TGF-β1 (0.2 to 20 ng/ml) or H 2 O 2 (1 to 500 μM) in the presence or absence of antioxidants (N-acetylcysteine or catalase), inhibitors of NADPH oxidase (diphenyleneiodonium and apocynin), mitochondrial electron transfer chain subunit I (rotenone), and MAPK (PD 98059, an MEK [MAP kinase/ERK kinase] inhibitor, or p38 MAPK inhibitor) for up to 96 h. TGF-β1 increased dichlorofluorescein-sensitive cellular ROS, phosphorylated Smad 2, p38 MAPK, extracellular signal-regulated kinases (ERK)1/2, α-smooth muscle actin (α-SMA) expression, and fibronectin secretion and decreased E-cadherin expression. Antioxidants effectively inhibited TGF-β1–induced cellular ROS, phosphorylation of Smad 2, p38 MAPK, and ERK, and EMT. H 2 O 2 reproduced all of the effects of TGF-β1 with the exception of Smad 2 phosphorylation. Chemical inhibition of ERK but not p38 MAPK inhibited TGF-β1–induced Smad 2 phosphorylation, and both MAPK inhibitors inhibited TGF-β1- and H 2 O 2 -induced EMT. Diphenyleneiodonium, apocynin, and rotenone also significantly inhibited TGF-β1–induced ROS. Thus, this data suggest that ROS play an important role in TGF-β1–induced EMT primarily through activation of MAPK and subsequently through ERK-directed activation of Smad pathway in proximal tubular epithelial cells.


Journal of The American Society of Nephrology | 2003

Reactive Oxygen Species-Regulated Signaling Pathways in Diabetic Nephropathy

Hi Bahl Lee; Mi-Ra Yu; Yanqiang Yang; Zongpei Jiang; Hunjoo Ha

Diabetic nephropathy is characterized by excessive deposition of extracellular matrix (ECM) in the kidney. TGF-beta1 has been identified as the key mediator of ECM accumulation in diabetic kidney. High glucose induces TGF-beta1 in glomerular mesangial and tubular epithelial cells and in diabetic kidney. Antioxidants inhibit high glucose-induced TGF-beta1 and ECM expression in glomerular mesangial and tubular epithelial cells and ameliorate features of diabetic nephropathy, suggesting that oxidative stress plays an important role in diabetic renal injury. High glucose induces intracellular reactive oxygen species (ROS) in mesangial and tubular epithelial cells. High glucose-induced ROS in mesangial cells can be effectively blocked by inhibition of protein kinase C (PKC), NADPH oxidase, and mitochondrial electron transfer chain complex I, suggesting that PKC, NADPH oxidase, and mitochondrial metabolism all play a role in high glucose-induced ROS generation. Advanced glycation end products, TGF-beta1, and angiotensin II can also induce ROS generation and may amplify high glucose-activated signaling in diabetic kidney. Both high glucose and ROS activate signal transduction cascade (PKC, mitogen-activated protein kinases, and janus kinase/signal transducers and activators of transcription) and transcription factors (nuclear factor-kappaB, activated protein-1, and specificity protein 1) and upregulate TGF-beta1 and ECM genes and proteins. These observations suggest that ROS act as intracellular messengers and integral glucose signaling molecules in diabetic kidney. Future studies elucidating various other target molecules activated by ROS in renal cells cultured under high glucose or in diabetic kidney will allow a better understanding of the final cellular responses to high glucose.


American Journal of Physiology-renal Physiology | 2009

Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury

Hyunjin Noh; Eun Young Oh; Ji Yeon Seo; Mi Ra Yu; Young Ok Kim; Hunjoo Ha; Hi Bahl Lee

Excessive accumulation of extracellular matrix (ECM) in the kidneys and epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells contributes to the renal fibrosis that is associated with diabetic nephropathy. Histone deacetylase (HDAC) determines the acetylation status of histones and thereby controls the regulation of gene expression. This study examined the effect of HDAC inhibition on renal fibrosis induced by diabetes or transforming growth factor (TGF)-beta1 and determined the role of reactive oxygen species (ROS) as mediators of HDAC activation. In streptozotocin (STZ)-induced diabetic kidneys and TGF-beta1-treated normal rat kidney tubular epithelial cells (NRK52-E), we found that trichostatin A, a nonselective HDAC inhibitor, decreased mRNA and protein expressions of ECM components and prevented EMT. Valproic acid and class I-selective HDAC inhibitor SK-7041 also showed similar effects in NRK52-E cells. Among the six HDACs tested (HDAC-1 through -5 and HDAC-8), HDAC-2 activity significantly increased in the kidneys of STZ-induced diabetic rats and db/db mice and TGF-beta1-treated NRK52-E cells. Levels of mRNA expression of fibronectin and alpha-smooth muscle actin were decreased, whereas E-cadherin mRNA was increased when HDAC-2 was knocked down using RNA interference in NRK52-E cells. Interestingly, hydrogen peroxide increased HDAC-2 activity, and the treatment with an antioxidant, N-acetylcysteine, almost completely reduced TGF-beta1-induced activation of HDAC-2. These findings suggest that HDAC-2 plays an important role in the development of ECM accumulation and EMT in diabetic kidney and that ROS mediate TGF-beta1-induced activation of HDAC-2.


Diabetes Research and Clinical Practice | 1999

Pathogenesis of diabetic nephropathy : the role of oxidative stress and protein kinase C

Hunjoo Ha; Kyung Hwan Kim

Hyperglycemia, a well recognized pathogenetic factor of long-term complications in diabetes mellitus, not only generates more reactive oxygen species but also attenuates antioxidative mechanisms through glycation of the scavenging enzymes. Therefore, oxidative stress has been considered to be a common pathogenetic factor of the diabetic complications including nephropathy. A causal relationship between oxidative stress and diabetic nephropathy has been established by observations that (1) lipid peroxides and 8-hydroxydeoxyguanosine, indices of oxidative tissue injury, were increased in the kidneys of diabetic rats with albuminuria; (2) high glucose directly increases oxidative stress in glomerular mesangial cells, a target cell of diabetic nephropathy; (3) oxidative stress induces mRNA expression of TGF-beta1 and fibronectin which are the genes implicated in diabetic glomerular injury, and (4) inhibition of oxidative stress ameliorates all the manifestations associated with diabetic nephropathy. Proposed mechanisms involved in oxidative stress associated with hyperglycemia are glucose autooxidation, the formation of advanced glycosylation end products, and metabolic stress resulting from hyperglycemia. Since the inhibition of protein kinase C (PKC) effectively blocks not only phorbol ester-induced but also high glucose- and H2O2-induced fibronectin production, the activation of PKC under diabetic conditions may also have a modulatory role in oxidative stress-induced renal injury in diabetes mellitus.


Diabetes Research and Clinical Practice | 2008

Role of reactive oxygen species in the pathogenesis of diabetic nephropathy

Hunjoo Ha; In-A Hwang; Jong Hee Park; Hi Bahl Lee

There is an increasing evidence that reactive oxygen species (ROS) play a major role in the development of diabetic complications. Oxidative stress is increased in diabetes and the overproduction of ROS in diabetes is a direct consequence of hyperglycemia. Various types of vascular cells including renal cells are able to produce ROS under hyperglycemic condition. Both NADPH oxidase and mitochondrial electron gradient play roles in hyperglycemia-induced ROS generation. In addition to their ability to directly inflict macromolecular damage, ROS can function as signaling molecules. ROS mediate hyperglycemia-induced activation of signal transduction cascades and transcription factors leading to transcriptional activation of profibrotic genes in the kidney. Furthermore, ROS-activated signaling molecules generate and signal through ROS and thus ROS act as a signal amplifier. Intensive glycemic control and inhibition of angiotensin II delay the onset and progression of diabetic nephropathy, in part, through prevention of overproduction of ROS. Conventional and catalytic antioxidants have been shown to prevent or delay the onset of diabetic nephropathy. Combination of strategies to prevent overproduction of ROS and to increase the removal of preformed ROS may prove to be effective in preventing the development and progression of diabetic nephropathy.


Stem Cells | 2013

Autologous adipose tissue‐derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn's fistula

Woo Yong Lee; Kyu Joo Park; Yong Beom Cho; Sang Nam Yoon; Kee Ho Song; Do Sun Kim; Sang Hun Jung; Mihyung Kim; Hee-Won Yoo; Inok Kim; Hunjoo Ha; Chang Sik Yu

Fistula is a representative devastating complication in Crohns patients due to refractory to conventional therapy and high recurrence. In our phase I clinical trial, adipose tissue‐derived stem cells (ASCs) demonstrated their safety and therapeutic potential for healing fistulae associated with Crohns disease. This study was carried out to evaluate the efficacy and safety of ASCs in patients with Crohns fistulae. In this phase II study, forty‐three patients were treated with ASCs. The amount of ASCs was proportioned to fistula size and fistula tract was filled with ASCs in combination with fibrin glue after intralesional injection of ASCs. Patients without complete closure of fistula at 8 weeks received a second injection of ASCs containing 1.5 times more cells than the first injection. Fistula healing at week 8 after final dose injection and its sustainability for 1‐year were evaluated. Healing was defined as a complete closure of external opening without any sign of drainage and inflammation. A modified per‐protocol analysis showed that complete fistula healing was observed in 27/33 patients (82%) by 8 weeks after ASC injection. Of 27 patients with fistula healing, 26 patients completed additional observation study for 1‐year and 23 patients (88%) sustained complete closure. There were no adverse events related to ASC administration. ASC treatment for patients with Crohns fistulae was well tolerated, with a favorable therapeutic outcome. Furthermore, complete closure was well sustained. These results strongly suggest that autologous ASC could be a novel treatment option for the Crohns fistula with high‐risk of recurrence. STEM CELLS 2013;31:2575–2581


Journal of The American Society of Nephrology | 2003

Reactive Oxygen Species and Matrix Remodeling in Diabetic Kidney

Hunjoo Ha; Hi Bahl Lee

Excessive deposition of extracellular matrix (ECM) in the kidney is the hallmark of diabetic nephropathy. Although the amount of ECM deposited in the kidney depends on the balance between the synthesis and degradation of ECM, the role of ECM degradation in matrix remodeling has been less well appreciated. High glucose, advanced glycation end products, angiotensin II, and TGF-beta1 all increase intracellular reactive oxygen species (ROS) in renal cells and contribute to the development and progression of diabetic renal injury. The role of ROS in increased ECM synthesis has been well documented. ROS may also play a critical role in decreased ECM degradation by mediating high glucose- and TGF-beta1-induced inhibition of the proteolytic system, plasmin, and matrix metalloproteinases in the glomeruli. A recent observation suggests that ROS play an important role in tubulointerstitial fibrosis by mediating TGF-beta1-induced epithelial-mesenchymal transition (EMT). Accelerated ECM degradation is required to disrupt tubular basement membrane and complete EMT. ROS thus seem to be involved in both decreased and increased ECM degradation. It is not clear how cells determine when and where to increase or decrease ECM degradation in response to ROS. Precise definition of ROS-activated signaling pathways leading to ECM remodeling in the kidney will provide new strategies to prevent or treat diabetic renal injury.


Free Radical Biology and Medicine | 1999

Melatonin and taurine reduce early glomerulopathy in diabetic rats

Hunjoo Ha; Mi-Ra Yu; Kyung Hwan Kim

Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-beta1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg/kg. Two days after streptozotocin, diabetic rats were assigned to one of the following groups: i) untreated; ii) melatonin supplement by 0.02% in drinking water; or iii) taurine supplement by 1% in drinking water. Four weeks after streptozotocin, diabetic rats (n = 6: plasma glucose 516+/-12 mg/dl) exhibited 6.1 fold increase in urinary protein excretion, 1.4 fold increase in glomerular TGF-beta1 mRNA, 1.7 fold increase in glomerular fibronectin mRNA, 2.2 fold increase in plasma lipid peroxides (LPO), and 44 fold increase in urinary LPO excretion above the values in control rats (n = 6: plasma glucose 188+/-14 mg/dl). Chronic administration of melatonin (n = 6) and taurine (n = 6) prevented increases in glomerular TGF-beta1 and fibronectin mRNAs and proteinuria without having effect on blood glucose. Both treatments reduced lipid peroxidation by nearly 50%. The present data demonstrate beneficial effects of melatonin and taurine on early changes in diabetic kidney and suggest that diabetic nephropathy associated with hyperglycemia is largely mediated by oxidative stress.


Free Radical Biology and Medicine | 1994

DNA damage in the kidneys of diabetic rats exhibiting microalbuminuria

Hunjoo Ha; Chul Koo Kim; Youngsook Son; Myung-Hee Chung; Kyung Hwan Kim

8-Hydroxydeoxyguanosine (8-OHdG), an oxygen radical induced modification of purine residue in DNA, was measured in the liver, pancreas, and kidney of streptozotocin-induced diabetic rats (STZR) exhibiting microalbuminuria. At 4 weeks after the injection of streptozotocin (50 mg/kg, i.v.), the rate of urinary albumin excretion was 0.5 +/- 0.1 and 2.0 +/- 0.2 mg/24 h in age-matched control rats (CR) and STZR, respectively. Compared to CR, STZR also showed a significantly increased level of 8-OHdG in the kidney but not the liver and pancreas. Amounts of 8-OHdG/10(5) dG for CR and STZR were 3.4 +/- 0.3 and 5.1 +/- 0.2 for renal cortices, and 4.1 +/- 0.2 and 20.0 +/- 3.7 for renal papillae. Daily injection of insulin (2 U, SC) starting on the third day after streptozotocin treatment significantly reduced both urinary albumin excretion and papillary 8-OHdG formation, which suggests that these are associated with the diabetic state induced by streptozotocin rather than a direct nephrotoxic effect of the drug. This study suggests that formation of 8-OHdG and, therefore, oxidative damage are closely related in the process of diabetic nephropathy.


Nature Reviews Nephrology | 2009

The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases

Hunjoo Ha; Eun Young Oh; Hi Bahl Lee

The 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) is the major physiological inhibitor of tissue-type and urokinase-type plasminogen activator. These two molecules convert inactive plasminogen into its fibrin-degrading form, plasmin. Plasma and tissue concentrations of PAI-1 are extremely low under normal circumstances but increase under pathologic conditions. This increase is mediated by many factors, including reactive oxygen species. Increased PAI-1 activity is associated with an increased risk of ischemic cardiovascular events and tissue fibrosis. Whereas the antifibrinolytic property of PAI-1 derives mainly from its inhibition of serine proteases, its profibrotic actions seem to derive from a capacity to stimulate interstitial macrophage recruitment and increase transcription of profibrotic genes, as well as from inhibition of serine proteases. Despite studies in mice that lack or overexpress PAI-1, the biological effects of this molecule in humans remain incompletely understood because of the complexity of the PAI-1–plasminogen-activator–plasmin system. The cardioprotective and renoprotective properties of some currently available drugs might be attributable in part to inhibition of PAI-1. The development of an orally active, high-affinity PAI-1 inhibitor will provide a potentially important pharmacological tool for further investigation of the role of PAI-1 and might offer a novel therapeutic strategy in renal and cardiovascular diseases.

Collaboration


Dive into the Hunjoo Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joo Young Huh

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunjin Noh

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Inah Hwang

Ewha Womans University

View shared research outputs
Researchain Logo
Decentralizing Knowledge