Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hunter B. Fraser is active.

Publication


Featured researches published by Hunter B. Fraser.


Nature | 2001

Protein dispensability and rate of evolution

Aaron E. Hirsh; Hunter B. Fraser

If protein evolution is due in large part to slightly deleterious amino acid substitutions, then the rate of evolution should be greater in proteins that contribute less to individual fitness. The rationale for this prediction is that relatively dispensable proteins should be subject to weaker purifying selection, and should therefore accumulate mildly deleterious substitutions more rapidly. Although this argument was presented over twenty years ago, and is fundamental to many applications of evolutionary theory, the prediction has proved difficult to confirm. In fact, a recent study showed that essential mouse genes do not evolve more slowly than non-essential ones. Thus, although a variety of factors influencing the rate of protein evolution have been supported by extensive sequence analysis, the relationship between protein dispensability and evolutionary rate has remained unconfirmed. Here we use the results from a highly parallel growth assay of single gene deletions in yeast to assess protein dispensability, which we relate to evolutionary rate estimates that are based on comparisons of sequences drawn from twenty-one fully annotated genomes. Our analysis reveals a highly significant relationship between protein dispensability and evolutionary rate, and explains why this relationship is not detectable by categorical comparison of essential versus non-essential proteins. The relationship is highly conserved, so that protein dispensability in yeast is also predictive of evolutionary rate in a nematode worm.


PLOS Biology | 2004

Noise minimization in eukaryotic gene expression.

Hunter B. Fraser; Aaron E. Hirsh; Guri Giaever; Jochen Kumm; Michael B. Eisen

All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or “noise.” Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Factors underlying variable DNA methylation in a human community cohort

Lucia L. Lam; Eldon Emberly; Hunter B. Fraser; Sarah Neumann; Edith Chen; Gregory E. Miller; Michael S. Kobor

Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.


Bioinformatics | 2003

Detecting putative orthologs

Dennis P. Wall; Hunter B. Fraser; Aaron E. Hirsh

We developed an algorithm that improves upon the common procedure of taking reciprocal best blast hits(rbh) in the identification of orthologs. The method-reciprocal smallest distance algorithm (rsd)-relies on global sequence alignment and maximum likelihood estimation of evolutionary distances to detect orthologs between two genomes. rsd finds many putative orthologs missed by rbh because it is less likely than rbh to be misled by the presence of a close paralog.


PLOS Biology | 2004

Conservation and evolution of cis-regulatory systems in ascomycete fungi

Audrey P. Gasch; Alan M. Moses; Derek Y. Chiang; Hunter B. Fraser; Mark Berardini; Michael B. Eisen

Relatively little is known about the mechanisms through which gene expression regulation evolves. To investigate this, we systematically explored the conservation of regulatory networks in fungi by examining the cis-regulatory elements that govern the expression of coregulated genes. We first identified groups of coregulated Saccharomyces cerevisiae genes enriched for genes with known upstream or downstream cis-regulatory sequences. Reasoning that many of these gene groups are coregulated in related species as well, we performed similar analyses on orthologs of coregulated S. cerevisiae genes in 13 other ascomycete species. We find that many species-specific gene groups are enriched for the same flanking regulatory sequences as those found in the orthologous gene groups from S. cerevisiae, indicating that those regulatory systems have been conserved in multiple ascomycete species. In addition to these clear cases of regulatory conservation, we find examples of cis-element evolution that suggest multiple modes of regulatory diversification, including alterations in transcription factor-binding specificity, incorporation of new gene targets into an existing regulatory system, and cooption of regulatory systems to control a different set of genes. We investigated one example in greater detail by measuring the in vitro activity of the S. cerevisiae transcription factor Rpn4p and its orthologs from Candida albicans and Neurospora crassa. Our results suggest that the DNA binding specificity of these proteins has coevolved with the sequences found upstream of the Rpn4p target genes and suggest that Rpn4p has a different function in N. crassa.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing

Moran Yassour; Tommy Kaplan; Hunter B. Fraser; Joshua Z. Levin; Jenna Pfiffner; Xian Adiconis; Gary P. Schroth; Shujun Luo; Irina Khrebtukova; Andreas Gnirke; Chad Nusbaum; Dawn-Anne Thompson; Nir Friedman; Aviv Regev

Defining the transcriptome, the repertoire of transcribed regions encoded in the genome, is a challenging experimental task. Current approaches, relying on sequencing of ESTs or cDNA libraries, are expensive and labor-intensive. Here, we present a general approach for ab initio discovery of the complete transcriptome of the budding yeast, based only on the unannotated genome sequence and millions of short reads from a single massively parallel sequencing run. Using novel algorithms, we automatically construct a highly accurate transcript catalog. Our approach automatically and fully defines 86% of the genes expressed under the given conditions, and discovers 160 previously undescribed transcription units of 250 bp or longer. It correctly demarcates the 5′ and 3′ UTR boundaries of 86 and 77% of expressed genes, respectively. The method further identifies 83% of known splice junctions in expressed genes, and discovers 25 previously uncharacterized introns, including 2 cases of condition-dependent intron retention. Our framework is applicable to poorly understood organisms, and can lead to greater understanding of the transcribed elements in an explored genome.


Nature Genetics | 2005

Modularity and evolutionary constraint on proteins

Hunter B. Fraser

Modularity, which has been found in the functional and physical protein interaction networks of many organisms, has been postulated to affect both the mode and tempo of evolution. Here I show that in the yeast Saccharomyces cerevisiae, protein interaction hubs situated in single modules are highly constrained, whereas those connecting different modules are more plastic. This pattern of change could reflect a tendency for evolutionary innovations to occur by altering the proteins and interactions between rather than within modules, in a manner somewhat similar to the evolution of new proteins through the shuffling of conserved protein domains.


BMC Evolutionary Biology | 2003

A simple dependence between protein evolution rate and the number of protein-protein interactions

Hunter B. Fraser; Dennis P. Wall; Aaron E. Hirsh

BackgroundIt has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species.ResultsIn contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae.ConclusionsProtein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s) behind the correlations we have observed.


Genome Biology | 2012

Population-specificity of human DNA methylation

Hunter B. Fraser; Lucia L. Lam; Sarah Neumann; Michael S. Kobor

BackgroundEthnic differences in human DNA methylation have been shown for a number of CpG sites, but the genome-wide patterns and extent of these differences are largely unknown. In addition, whether the genetic control of polymorphic DNA methylation is population-specific has not been investigated.ResultsHere we measure DNA methylation near the transcription start sites of over 14, 000 genes in 180 cell lines derived from one African and one European population. We find population-specific patterns of DNA methylation at over a third of all genes. Furthermore, although the methylation at over a thousand CpG sites is heritable, these heritabilities also differ between populations, suggesting extensive divergence in the genetic control of DNA methylation. In support of this, genetic mapping of DNA methylation reveals that most of the population specificity can be explained by divergence in allele frequencies between populations, and that there is little overlap in genetic associations between populations. These population-specific genetic associations are supported by the patterns of DNA methylation in several hundred brain samples, suggesting that they hold in vivo and across tissues.ConclusionsThese results suggest that DNA methylation is highly divergent between populations, and that this divergence may be due in large part to a combination of differences in allele frequencies and complex epistasis or gene × environment interactions.


PLOS Biology | 2005

Aging and Gene Expression in the Primate Brain

Hunter B. Fraser; Philipp Khaitovich; Joshua B. Plotkin; Svante Pääbo; Michael B. Eisen

It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

Collaboration


Dive into the Hunter B. Fraser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua B. Plotkin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Kobor

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge