Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Husnain Kh Haider is active.

Publication


Featured researches published by Husnain Kh Haider.


Circulation Research | 2008

IGF-1–Overexpressing Mesenchymal Stem Cells Accelerate Bone Marrow Stem Cell Mobilization via Paracrine Activation of SDF-1α/CXCR4 Signaling to Promote Myocardial Repair

Husnain Kh Haider; Shujia Jiang; Niagara Muhammad Idris; Muhammad Ashraf

We hypothesized that mesenchymal stem cells (MSCs) overexpressing insulin-like growth factor (IGF)-1 showed improved survival and engraftment in the infarcted heart and promoted stem cell recruitment through paracrine release of stromal cell–derived factor (SDF)-1α. Rat bone marrow–derived MSCs were used as nontransduced (NormMSCs) or transduced with adenoviral-null vector (NullMSCs) or vector encoding for IGF-1 (IGF-1MSCs). IGF-1MSCs secreted higher IGF-1 until 12 days of observation (P<0.001 versus NullMSCs). Molecular studies revealed activation of phosphoinositide 3-kinase, Akt, and Bcl.xL and inhibition of glycogen synthase kinase 3β besides release of SDF-1α in parallel with IGF-1 expression in IGF-1MSCs. For in vivo studies, 70 &mgr;L of DMEM without cells (group 1) or containing 1.5×106NullMSCs (group 2) or IGF-1MSCs (group 3) were implanted intramyocardially in a female rat model of permanent coronary artery occlusion. One week later, immunoblot on rat heart tissue (n=4 per group) showed elevated myocardial IGF-1 and phospho-Akt in group 3 and higher survival of IGF-1MSCs (P<0.06 versus NullMSCs) (n=6 per group). SDF-1α was increased in group 3 animal hearts (20-fold versus group 2), with massive mobilization and homing of ckit+, MDR1+, CD31+, and CD34+ cells into the infarcted heart. Infarction size was significantly reduced in cell transplanted groups compared with the control. Confocal imaging after immunostaining for myosin heavy chain, actinin, connexin-43, and von Willebrand factor VIII showed extensive angiomyogenesis in the infarcted heart. Indices of left ventricular function, including ejection fraction and fractional shortening, were improved in group 3 as compared with group 1 (P<0.05). In conclusion, the strategy of IGF-1 transgene expression induced massive stem cell mobilization via SDF-1α signaling and culminated in extensive angiomyogenesis in the infarcted heart.


Journal of Biological Chemistry | 2009

Ischemic Preconditioning Augments Survival of Stem Cells via miR-210 Expression by Targeting Caspase-8-associated Protein 2

Ha Won Kim; Husnain Kh Haider; Shujia Jiang; Muhammad Ashraf

MicroRNAs (miRs) participate in most cellular functions by posttranscriptional regulation of gene expression albeit with little information regarding their role in ischemic preconditioning (IP) of stem cells. We report that IP of bone marrow-derived mesenchymal stem cells (MSCs) with two cycles of 30-min ischemia/reoxygenation (I/R) supported their survival under subsequent longer exposure to anoxia and following engraftment in the infarcted heart. IP significantly reduced apoptosis in MSCs through activation of Akt (Ser473) and ERK1/2 (Thr202/Tyr204) and nuclear translocation of hypoxia-inducible factor-1α (HIF-1α). We observed concomitant induction of miR-210 in the preconditioned MSCs (PCMSCs). Inhibition of HIF-1α or of miR-210 abrogated the cytoprotective effects of preconditioning. Extrapolation of these data to in vivo studies in a rat model of acute myocardial infarction predominantly improved stem cell survival after engraftment with a role for miR-210. Notably, multiple I/R cycles more effectively regulated the miR-210 and hence promoted MSC survival compared with single-cycle hypoxia of an equal duration. Real time PCR array for rat apoptotic genes, computational target gene analyses, and luciferase reporter assay identified FLICE-associated huge protein (FLASH)/caspase-8-associated protein-2 (Casp8ap2) in PCMSCs as the target gene of miR-210. Induction of FLASH/CASP8AP2 in miR-210 knocked-down PCMSCs resulted in increased cell apoptosis. Taken together, these data demonstrated that cytoprotection afforded by IP was regulated by miR-210 induction via FLASH/Casp8ap2 suppression. These results highlighted that IP by multiple short episodes of I/R is a novel strategy to promote stem cell survival.


Journal of Molecular and Cellular Cardiology | 2008

Strategies to promote donor cell survival: Combining preconditioning approach with stem cell transplantation

Husnain Kh Haider; Muhammad Ashraf

Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.


Circulation Research | 2007

Pharmacologically Preconditioned Skeletal Myoblasts Are Resistant to Oxidative Stress and Promote Angiomyogenesis via Release of Paracrine Factors in the Infarcted Heart

Muhammad Idris Niagara; Husnain Kh Haider; Shujia Jiang; Muhammad Ashraf

Strategies to enhance skeletal myoblast (SkM) survival after transplantation in the ischemic heart have achieved little success. We posit that preconditioned (PC) SkMs show improved survival and promote repair of the infarcted myocardium via paracrine signaling after transplantation. SkMs from male Fischer-344 rats (rSkMs) were PC for 30 minutes with 200 &mgr;mol/L diazoxide. Treatment of PC rSkMs with 100 &mgr;mol/L H2O2 for 2 hours resulted in significantly reduced cell injury, as shown by lactate dehydrogenase–release assay, and prevented apoptosis, as demonstrated by cytochrome c translocation, TUNEL, annexin V staining, and preservation of mitochondrial membrane potential. PC rSkMs expressed elevated phospho-Akt (1.85-fold), basic fibroblast growth factor (1.44-fold), hepatocyte growth factor (2.26-fold), and cyclooxygenase-2 (1.33-fold) as compared with non-PC rSkMs. For in vivo studies, female Fischer-344 rats after permanent coronary artery ligation were grouped (n=12/group) to receive 80 &mgr;L of basal medium without rSkMs (group 1) or containing 1.5×106 non-PC (group 2) or PC (group 3) rSkMs. Real-time PCR for sry gene 4 days after transplantation (n=4/group) showed 1.93-fold higher survival of rSkMs in group 3 as compared with group 2. Four weeks later, echocardiography revealed improved indices of left ventricular function, including ejection fraction and fractional shortening in group 3 (P<0.02) as compared with groups 1 and 2. Blood vessel count per surface area (at ×400 magnification) was highest in scar and periscar areas in group 3 as compared with the other groups (P<0.05). We conclude that activation of signaling pathways of preconditioning in SkMs promoted their survival by release of paracrine factors to promote angiomyogenesis in the infarcted heart. Transplantation of PC SkMs for heart cell therapy is an innovative approach in the clinical perspective.


Circulation Research | 2006

Supportive Interaction Between Cell Survival Signaling and Angiocompetent Factors Enhances Donor Cell Survival and Promotes Angiomyogenesis for Cardiac Repair

Shujia Jiang; Husnain Kh Haider; Niagara Muhammad Idris; Asmat Salim; Muhammad Ashraf

Akt is a major cell survival and angiogenic mediator downstream of angiopoietin-1 (Ang-1)/Tie-2 signaling pathway. We hypothesize that transplantation of mesenchymal stem cells (MSCs) co-overexpressing Ang-1 and Akt lead to better prognosis. Ang-1 and Akt genes were adenovirally transduced into MSCs from male Fischer rats. Cytoprotective effects of transgene overexpression in vitro were assessed by exposure of cells to 8 hours of anoxia. TUNEL and measurement of lactate dehydrogenase showed that MSCs co-overexpressing Ang-1 and Akt (MAAs) were more resistant to anoxia as compared with the nontransduced MSCs or those transduced with Ang-1 or Akt alone. For in vivo studies, after permanent coronary artery occlusion, animals were grouped (n=20/group) to receive intramyocardial injections of 70 &mgr;L of basal medium without cells (group 1) or containing 3×106 nontransduced MSCs (group 2) or MAAs (group 3). Four animals per group were euthanized on 4, 7, and 14 days after cell transplantation for molecular studies. Extensive survival of MAAs was observed in group 3, which continued to co-overexpress transgenes in rat heart at 2 weeks after cell transplantation. Immunohistology at 4 weeks revealed myogenic differentiation of donor cells at the site of cell graft. Blood vessel density was highest in the infarct and periinfarct regions in group 3 (P<0.05). Echocardiography at 4 weeks showed that heart function indices were significantly improved in group 3 (P<0.05), including ejection fraction and fractional shortening as compared with groups 1 and 2. We conclude that supportive interaction between Ang-1 and Akt during MSC transplantation gave better prognosis via enhanced cell survival, improved angiomyogenesis, and restored global cardiac function.


Circulation | 2009

Sca-1+ Stem Cell Survival and Engraftment in the Infarcted Heart: Dual Role for Preconditioning-Induced Connexin-43

Gang Lu; Husnain Kh Haider; Shujia Jiang; Muhammad Ashraf

Background— We report that elevated connexin-43 (Cx-43) in stem cells preconditioned with insulin-like growth factor-1 (IGF-1) is cytoprotective and reprograms the cells for cardiomyogenic differentiation. Methods and Results— Sca-1+ cells were preconditioned with 100 nmol/L IGF-1 for 30 minutes followed by 8 hours of oxygen glucose deprivation to assess the cytoprotective effects of preconditioning. LDH release assay, cytochrome c release, and mitochondrial membrane potential assay showed improved survival of preconditioned Sca-1+ cells under oxygen glucose deprivation compared with nonpreconditioned Sca-1+ cells via PI3K/Akt-dependent caspase-3 downregulation. We observed PI3K/Akt-dependent upregulation of cardiac-specific markers including MEF-2c (2.5-fold), GATA4 (3.1-fold), and Cx-43 (3.5-fold). Cx-43 inhibition with specific RNA interference reduced cell survival under oxygen glucose deprivation and after transplantation. In vivo studies were performed in a female rat model of acute myocardial infarction (n=78). Animals were grouped to receive intramyocardially 70 &mgr;L Dulbecco modified Eagles medium without cells (group 1) or containing male 1×106 nonpreconditioned Sca-1+ cells (group 2) or preconditioned Sca-1+ (group 3) cells labeled with PKH26. Survival of the preconditioned Sca-1+ cells was 5.5-fold higher in group 3 compared with group 2 at 7 days after transplantation. Confocal imaging after actinin and Cx-43 specific immunostaining showed extensive engraftment and myogenic differentiation of preconditioned Sca-1+ cells. Compared with group 2, group 3 showed increased blood vessel density (22.3±1.7 per microscopic field; P<0.0001) and attenuated infarction size (23.3±3.6%; P=0.002). Heart function indices including ejection fraction (56.2±3.5; P=0.029) and fractional shortening (24.3±2.1; P=0.03) were improved in group 3 compared with group 2. Conclusions— Preconditioning with IGF-1 reprograms Sca-1+ for prosurvival signaling and cardiomyogenic differentiation with an important role for Cx-43 in this process.


Journal of Cardiovascular Translational Research | 2010

Preconditioning and Stem Cell Survival

Husnain Kh Haider; Muhammad Ashraf

The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and “prime” the cells to the “state of readiness” to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.


Circulation | 2007

Transplantation of Nanoparticle Transfected Skeletal Myoblasts Overexpressing Vascular Endothelial Growth Factor-165 for Cardiac Repair

Lei Ye; Husnain Kh Haider; Ru San Tan; WeeChi Toh; Peter K. Law; WeeBeng Tan; LiPing Su; Wei Zhang; Ruowen Ge; Yong Zhang; Yean-Teng Lim; Eugene K.W. Sim

Background— We investigated the feasibility and efficacy of polyethylenimine (PEI) based human vascular endothelial growth factor-165 (hVEGF165) gene transfer into human skeletal myoblasts (HSM) for cell based delivery to the infarcted myocardium. Methods and Results— Based on optimized transfection procedure using enhanced green fluorescent protein (pEGFP), HSM were transfected with plasmid-hVEGF165 (phVEGF165) carried by PEI (PEI- phVEGF165) nanoparticles. The transfected HSM were characterized for transfection and expression of hVEGF165 in vitro and transplanted into rat heart model of acute myocardial infarction (AMI): group-1=DMEM injection, group-2= HSM transplantation, group-3= PEI-phVEGF165–transfected HSM (PEI-phVEGF165 myoblast) transplantation. A total of 48 rats received cyclosporine injection from 3 days before and until 4 weeks after cell transplantation. Echocardiography was performed to assess the heart function. Animals were sacrificed for molecular and histological studies on the heart tissue at 4 weeks after treatment. Based on optimized transfection conditions, transfected HSM expressed hVEGF165 for 18 days with >90% cell viability in vitro. Apoptotic index was reduced in group-2 and group-3 as compared with group-1. Blood vessel density (×400) by immunostaining for PECAM-1 in group-3 was significantly higher (P=0.043 for both) as compared with group-1 and group-2 at 4 weeks. Regional blood flow (ml/min/g) in the left ventricular anterior wall was higher in group-3 (P=0.043 for both) as compared with group-1 and group-2. Improved ejection fraction was achieved in group-3 (58.44±4.92%) as compared with group-1 (P=0.004). Conclusion— PEI nanoparticle mediated hVEGF165 gene transfer into HSM is feasible and safe. It may serve as a novel and efficient alternative for angiomyogenesis in cardiac repair.


Journal of Molecular and Cellular Cardiology | 2008

Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium

Shujia Jiang; Husnain Kh Haider; Rafeeq P.H. Ahmed; Niagara Muhammad Idris; Asmat Salim; Muhammad Ashraf

Most clinical studies have used autologous bone marrow (BM) stem cells for myocardial regeneration in elderly patients. We hypothesize that aging impairs the survival and differentiation potential of BM stem cells thus limiting their therapeutic efficacy. BM-derived MSCs from young ((Yng)MSCs; 8-12 weeks) and old ((Old)MSCs; 24-26 months) rats were purified and assessed for their responsiveness to anoxia and reparability of infarcted heart. Higher expression of angiogenic growth factors was observed by (Yng)MSCs under anoxia as compared to (Old)MSCs, cultured either alone or in co-culture ((Co-old)MSCs) with (Yng)MSCs. Likewise, (Yng)MSCs were more tolerant to apoptotic stimuli and showed higher ability to form tubular structures during in vitro Matrigel assay as compared to (Old)MSCs and (Co-old)MSCs with a possible role of p21 and p27 as contributory survival factors. For in vivo studies, acute myocardial infarction model was developed in Fischer-344 rats (n=38). The animals were grouped to receive 70 microl basal DMEM without cells (group 1) or containing 2 x 10(6)(Yng)MSCs (PKH67 labeled; group 2) or (Old)MSCs (PKH26 labeled; group 3) and mixture of (Yng)MSCs + (Old)MSCs (1 x 10(6) cells each; group 4). Histological studies revealed that by day 7, (Yng)MSCs showed elongated morphology with orientation similar to the host muscle architecture. Electron microscopy and confocal imaging after fluorescent immunostaining showed superior angiomyogenic potential of (Yng)MSCs. Echocardiography showed significantly preserved heart function indices in the animals transplanted with (Yng)MSCs. Aging impairs the responsiveness of (Old)MSCs to anoxia and their differentiation potential. (Yng)MSCs fail to alter the survival of (Old)MSCs under in vitro as well as in vivo conditions. It is therefore concluded that transplantation of stem cells from young donors would be a better option for heart cell therapy in future clinical studies.


Antioxidants & Redox Signaling | 2010

Preconditioning Promotes Survival and Angiomyogenic Potential of Mesenchymal Stem Cells in the Infarcted Heart via NF-κB Signaling

Muhammad Afzal; Husnain Kh Haider; Niagara Muhammad Idris; Shujia Jiang; Rafeeq P.H. Ahmed; Muhammad Ashraf

We proposed that pharmacological manipulation of mesenchymal stem cells (MSCs) with diazoxide enhanced their survival and regenerative potential via NFkappaB regulation. MSCs preconditioned ((PC)MSCs) with diazoxide and later subjected to oxidant stress with 100 micromol/L H(2)O(2) either immediately or after 24 h exhibited higher survival (p < 0.01 vs nonpreconditioned MSCs; (Non-PC)MSCs) with concomitantly increased phosphorylation of PI3K, Akt, GSK3beta (cytoplasmic), and NF-kappaB (p65) (nuclear). Akt kinase activity was determined as a function of GSK3beta activity. Pretreatment of (PC)MSCs with Wortmannin (Wt), NEMO-binding domain (NBD), or NF-kappaB (p50) siRNA abolished NF-kappaB (p65) activity. Preconditioning increased NF-kappaB-dependent elevation of secretable growth factors associated with their paracrine effects. Inhibition of PI3K activity with Wt reduced (PC)MSCs viability at both early and 24 h time-points. However, inhibition of NF-kappaB reduced viability of (PC)MSCs only at 24 h time-point. For in vivo studies, DMEM without cells (group-1) or containing 1 x 10(6) male (Non-PC)MSCs (group-2), (PC)MSCs (group-3), (PC)MSCs pretreated with Wortmannin (group-4) or NF-kappaB decoy (group-5) were transplanted in a female rat model of acute myocardial infarction. Group-3 showed highest cell survival and growth factor expression, increased angiomyogenesis, and functional improvement. We conclude that activation of NF-kappaB by preconditioning promoted (PC)MSCs survival and angiomyogenic potential in the infarcted heart.

Collaboration


Dive into the Husnain Kh Haider's collaboration.

Top Co-Authors

Avatar

Shujia Jiang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene K.W. Sim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Lei Ye

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter K. Law

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruowen Ge

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ru San Tan

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge