Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hussein Daoud is active.

Publication


Featured researches published by Hussein Daoud.


American Journal of Human Genetics | 2011

Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

Fadi F. Hamdan; Julie Gauthier; Yoichi Araki; Da-Ting Lin; Yuhki Yoshizawa; Kyohei Higashi; A-Reum Park; Dan Spiegelman; Amélie Piton; Hideyuki Tomitori; Hussein Daoud; Christine Massicotte; Edouard Henrion; Ousmane Diallo; Masoud Shekarabi; Claude Marineau; Michael Shevell; Bruno Maranda; Grant A. Mitchell; Amélie Nadeau; Guy D'Anjou; Michel Vanasse; Myriam Srour; Ronald G. Lafrenière; Pierre Drapeau; Jean Claude Lacaille; Eunjoon Kim; Jae-Ran Lee; Kazuei Igarashi; Richard L. Huganir

Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.


American Journal of Human Genetics | 2010

Direct Measure of the De Novo Mutation Rate in Autism and Schizophrenia Cohorts

Julie Gauthier; Rachel A. Myers; Ferran Casals; Fadi F. Hamdan; Alexander R. Griffing; Mélanie Côté; Edouard Henrion; Dan Spiegelman; Julien Tarabeux; Amélie Piton; Yan Yang; Adam R. Boyko; Carlos Bustamante; Lan Xiong; Judith L. Rapoport; Anjene Addington; J. Lynn E. DeLisi; Marie-Odile Krebs; Ridha Joober; Bruno Millet; Eric Fombonne; Laurent Mottron; Martine Zilversmit; Jon Keebler; Hussein Daoud; Claude Marineau; Marie-Hélène Roy-Gagnon; Marie-Pierre Dubé; Adam Eyre-Walker; Pierre Drapeau

The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (μ) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of ∼430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 × 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants.


Journal of Medical Genetics | 2008

Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis

Hussein Daoud; Paul N. Valdmanis; Edor Kabashi; Patrick A. Dion; Nicolas Dupré; William Camu; Vincent Meininger; Guy A. Rouleau

Aims and background: Mutations in the TARDBP gene, which encodes the TAR DNA binding protein (TDP-43), have been described in individuals with familial and sporadic amyotrophic lateral sclerosis (ALS). We screened the TARDBP gene in 285 French sporadic ALS patients to assess the frequency of TARDBP mutations in ALS. Results: Six individuals had potentially deleterious mutations of which three were novel including a Y374X truncating mutation and P363A and A382P missense mutations. This suggests that TARDBP mutations may predispose to ALS in approximately 2% of the individuals followed in this study. Conclusion: Our findings, combined with those from other collections, brings the total number of mutations in unrelated ALS patients to 17, further suggesting that mutations in the TARDBP gene have an important role in the pathogenesis of ALS.


American Journal of Human Genetics | 2010

De Novo Mutations in FOXP1 in Cases with Intellectual Disability, Autism, and Language Impairment

Fadi F. Hamdan; Hussein Daoud; Daniel Rochefort; Amélie Piton; Julie Gauthier; Mathieu Langlois; Gila Foomani; Marie-Odile Krebs; Ridha Joober; Ronald G. Lafrenière; Jean-Claude Lacaille; Laurent Mottron; Pierre Drapeau; Miriam H. Beauchamp; Michael Phillips; Eric Fombonne; Guy A. Rouleau; Jacques L. Michaud

Heterozygous mutations in FOXP2, which encodes a forkhead transcription factor, have been shown to cause developmental verbal dyspraxia and language impairment. FOXP2 and its closest homolog, FOXP1, are coexpressed in brain regions that are important for language and cooperatively regulate developmental processes, raising the possibility that FOXP1 may also be involved in developmental conditions that are associated with language impairment. In order to explore this possibility, we searched for mutations in FOXP1 in patients with intellectual disability (ID; mental retardation) and/or autism spectrum disorders (ASD). We first performed array-based genomic hybridization on sporadic nonsyndromic ID (NSID) (n = 30) or ASD (n = 80) cases. We identified a de novo intragenic deletion encompassing exons 4-14 of FOXP1 in a patient with NSID and autistic features. In addition, sequencing of all coding exons of FOXP1 in sporadic NSID (n = 110) or ASD (n = 135) cases, as well as in 570 controls, revealed the presence of a de novo nonsense mutation (c.1573C>T [p.R525X]) in the conserved forkhead DNA-binding domain in a patient with NSID and autism. Luciferase reporter assays showed that the p.R525X alteration disrupts the activity of the protein. Formal assessments revealed that both patients with de novo mutations in FOXP1 also show severe language impairment, mood lability with physical aggressiveness, and specific obsessions and compulsions. In conclusion, both FOXP1 and FOXP2 are associated with language impairment, but decrease of the former has a more global impact on brain development than that of the latter.


Neurology | 2009

Mutations in FUS cause FALS and SALS in French and French Canadian populations

Véronique V. Belzil; Paul N. Valdmanis; Patrick A. Dion; Hussein Daoud; Edor Kabashi; Anne Noreau; J. Gauthier; P. Hince; Anne Desjarlais; Jean-Pierre Bouchard; Lucette Lacomblez; François Salachas; Pierre-François Pradat; William Camu; Vincent Meininger; Nicolas Dupré; Guy A. Rouleau

Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.


Biological Psychiatry | 2011

De Novo SYNGAP1 Mutations in Nonsyndromic Intellectual Disability and Autism

Fadi F. Hamdan; Hussein Daoud; Amélie Piton; Julie Gauthier; Marie-Odile Krebs; Ridha Joober; Jean-Claude Lacaille; Amélie Nadeau; Jeff M. Milunsky; Zhenyuan Wang; Lionel Carmant; Laurent Mottron; Miriam H. Beauchamp; Guy A. Rouleau; Jacques L. Michaud

BACKGROUND Little is known about the genetics of nonsyndromic intellectual disability (NSID). Recently, we reported de novo truncating mutations in the SYNGAP1 gene of 3 of 94 NSID cases, suggesting that its disruption represents a common cause of autosomal dominant NSID. METHODS To further explore the involvement of SYNGAP1 in NSID, we sequenced its exons and intronic boundaries in 60 additional sporadic cases of NSID, including 30 patients with autism spectrum disorders (ASD) and 9 with epilepsy, and in 380 control individuals. RESULTS We identified de novo out-of-frame deletions in two patients with NSID and mild generalized epilepsy (c.2677delC/p.Q893RfsX184 and c.321_324delGAAG/p. K108VfsX25) and a de novo splicing mutation (c.2294 + 1G>A), which results in the creation of a premature stop codon, in a patient with NSID and autism. No splicing or truncating mutations were found in control subjects. CONCLUSIONS We provide evidence that truncating mutations in SYNGAP1 are common in NSID and can be also associated with autism.


JAMA Neurology | 2011

Association of Long ATXN2 CAG Repeat Sizes With Increased Risk of Amyotrophic Lateral Sclerosis

Hussein Daoud; Véronique V. Belzil; Sandra Martins; Mike Sabbagh; Pierre Provencher; Lucette Lacomblez; Vincent Meininger; William Camu; Nicolas Dupré; Patrick A. Dion; Guy A. Rouleau

OBJECTIVE To analyze the ataxin 2 (ATXN2) CAG repeat size in a cohort of patients with amyotrophic lateral sclerosis (ALS) and healthy controls. Large (CAG)(n) alleles of the ATXN2 gene (27-33 repeats) were recently reported to be associated with an increased risk of ALS. DESIGN Case-control study. SETTING France and Quebec, Canada. PARTICIPANTS A total of 556 case patients with ALS and 471 healthy controls; both groups of participants are of French or French-Canadian origin. RESULTS We observed a significant association between ATXN2 high-length alleles (≥29 CAG repeats) and ALS in French and French-Canadian ALS populations. Furthermore, we identified spinocerebellar ataxia type 2-pathogenic polyglutamine expansions (≥32 CAG repeats) in both familial and sporadic ALS cases. CONCLUSIONS Altogether, our findings support ATXN2 high-length repeats as a risk factor for ALS and further indicate a genetic link between spinocerebellar ataxia type 2 and ALS.


Human Molecular Genetics | 2015

Deleterious mutations in the essential mRNA metabolism factor, hGle1, in Amyotrophic Lateral Sclerosis

Hannah M. Kaneb; Andrew W. Folkmann; Véronique V. Belzil; Li En Jao; Claire S. Leblond; Simon Girard; Hussein Daoud; Anne Noreau; Daniel Rochefort; Pascale Hince; Anna Szuto; Annie Levert; Sabrina Vidal; Catherine André-Guimont; William Camu; Jean-Pierre Bouchard; Nicolas Dupré; Guy A. Rouleau; Susan R. Wente; Patrick A. Dion

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons. Causative mutations in the global RNA-processing proteins TDP-43 and FUS among others, as well as their aggregation in ALS patients, have identified defects in RNA metabolism as an important feature in this disease. Lethal congenital contracture syndrome 1 and lethal arthrogryposis with anterior horn cell disease are autosomal recessive fetal motor neuron diseases that are caused by mutations in another global RNA-processing protein, hGle1. In this study, we carried out the first screening of GLE1 in ALS patients (173 familial and 760 sporadic) and identified 2 deleterious mutations (1 splice site and 1 nonsense mutation) and 1 missense mutation. Functional analysis of the deleterious mutants revealed them to be unable to rescue motor neuron pathology in zebrafish morphants lacking Gle1. Furthermore, in HeLa cells, both mutations caused a depletion of hGle1 at the nuclear pore where it carries out an essential role in nuclear export of mRNA. These results suggest a haploinsufficiency mechanism and point to a causative role for GLE1 mutations in ALS patients. This further supports the involvement of global defects in RNA metabolism in ALS.


Neurobiology of Aging | 2012

Exome sequencing reveals SPG11 mutations causing juvenile ALS.

Hussein Daoud; Sirui Zhou; Anne Noreau; Mike Sabbagh; Véronique V. Belzil; Alexandre Dionne-Laporte; Christine Tranchant; Patrick A. Dion; Guy A. Rouleau

We report here the description of a nonconsanguineous family with 2 affected individuals with a recessively inherited juvenile motor neuron disease. Exome sequencing of these 2 affected individuals led us to identify 2 compound heterozygous deletions leading to a frameshift and a premature stop codon in the SPG11 gene. One of these deletions, c.5199delA in exon 30, has not been previously reported. Interestingly, these deletions are associated with an intrafamilial phenotypic heterogeneity as one affected has atypical juvenile amyotrophic lateral sclerosis (ALS) and the other has classical hereditary spastic paraplegia with thin corpus callosum. Our findings confirm SPG11 as a genetic cause of juvenile amyotrophic lateral sclerosis and indicate that SPG11 mutations could be associated with 2 different clinical phenotypes within the same family.


Journal of Medical Genetics | 2013

Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism

Hussein Daoud; Martine Tétreault; William T. Gibson; Kether Guerrero; Ana S.A. Cohen; Janina Gburek-Augustat; Matthis Synofzik; Bernard Brais; Cathy A. Stevens; Rocio Sanchez-Carpintero; Cyril Goizet; Sakkubai Naidu; Adeline Vanderver; Geneviève Bernard

Background Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterised by abnormal central nervous system white matter. Mutations in POLR3A and POLR3B genes were recently reported to cause four clinically overlapping hypomyelinating leukodystrophy phenotypes. Our aim was to investigate the presence and frequency of POLR3A and POLR3B mutations in patients with genetically unexplained hypomyelinating leukodystrophies with typical clinical and/or radiologic features of Pol III-related leukodystrophies. Methods The entire coding region and the flanking exon/intron boundaries of POLR3A and/or POLR3B genes were amplified and sequenced in 14 patients. Results Recessive mutations in POLR3A or POLR3B were uncovered in all 14 patients. Eight novel mutations were identified in POLR3A: six missenses, one nonsense, and one frameshift mutation. Seven patients carried compound heterozygous mutations in POLR3B, of whom six shared the common mutation in exon 15 (p.V523E). Seven novel mutations were identified in POLR3B: four missenses, two splice sites, and one intronic mutation. Conclusions To date, our group has described 37 patients, of whom 27 have mutations in POLR3A and 10 in POLR3B, respectively. Altogether, our results further support the proposal that POLR3A and POLR3B mutations are a major cause of hypomyelinating leukodystrophies and suggest that POLR3A mutations are more frequent.

Collaboration


Dive into the Hussein Daoud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick A. Dion

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Camu

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Spiegelman

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Fadi F. Hamdan

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Gauthier

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Amélie Piton

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge