Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hussein Y. Naim is active.

Publication


Featured researches published by Hussein Y. Naim.


Current Biology | 1999

O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts

Marwan Alfalah; Ralf Jacob; Ute Preuss; Klaus-Peter Zimmer; Hussein Y. Naim; Hassan Y. Naim

The plasma membrane of polarised epithelial cells is characterised by two structurally and functionally different domains, the apical and basolateral domains. These domains contain distinct protein and lipid constituents that are sorted by specific signals to the correct surface domain [1]. The best characterised apical sorting signal is that of glycophosphatidylinositol (GPI) membrane anchors [2], although N-linked glycans on some secreted proteins [3] and O-linked glycans [4] also function as apical sorting signals. In the latter cases, however, the underlying sorting mechanisms remain obscure. Here, we have analysed the role of O-glycosylation in the apical sorting of sucrase-isomaltase (SI), a highly polarised N- and O-glycosylated intestinal enzyme, and the mechanisms underlying this process. Inhibition of O-glycosylation by benzyl-N-acetyl-alpha-D-galactosaminide (benzyl-GalNAc) was accompanied by a dramatic shift in the sorting of SI from the apical membrane to both membranes. The sorting mechanism of SI involves its association with sphingolipid- and cholesterol-rich membrane rafts because this association was eliminated when O-glycosylation was inhibited by benzyl-GaINAc. The results demonstrate for the first time that O-linked glycans mediate apical sorting through association with lipid rafts.


Expert Review of Vaccines | 2007

Use of viral vectors for the development of vaccines

Matthias Liniger; Armando Zuniga; Hussein Y. Naim

The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. This review highlights various antigen-delivery systems, particularly viral vectors, and assesses the underlying technologies in light of their use against AIDS and malaria. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live, recombinant vectors may combine the induction of broad, strong and persistent immune responses with acceptable safety profiles.


The EMBO Journal | 2000

Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells

Hussein Y. Naim; Elisabeth Ehler; Martin A. Billeter

In polarized epithelial cells measles virus (MV) is predominantly released at the apical cell surface, irrespective of the sorting of its two envelope glycoproteins F and H. It has been reported previously that the viral matrix (M) protein modulates the fusogenic capacity of the viral envelope glycoproteins. Here, extant MV mutants and chimeras were used to determine the role of M protein in the transport of viral glycoproteins and release of progeny virions in polarized epithelial CaCo2 cells. In the absence of M, envelope glycoproteins are sorted to the basolateral surface, suggesting that they possess intrinsic basolateral sorting signals. However, interactions of M with the glycoprotein cytoplasmic tails allow M–glycoprotein co‐segregation to the apical surface, suggesting a vectorial function of M to retarget the glycoproteins for apical virion release. Whereas this may allow virus airway shedding, the intrinsic sorting of the glycoproteins to the basolateral surface may account for systemic host infection by allowing efficient cell–cell fusion.


Vaccine | 2007

Viral vectors for malaria vaccine development

Shengqiang Li; Emily Locke; Joseph T. Bruder; David Clarke; Denise L. Doolan; Menzo Jans Emco Havenga; Adrian V. S. Hill; Peter Liljeström; Thomas P. Monath; Hussein Y. Naim; Christian F. Ockenhouse; De Chu C Tang; Kent R. Van Kampen; Jean Francois Viret; Fidel Zavala; Filip Dubovsky

Abstract A workshop on viral vectors for malaria vaccine development, organized by the PATH Malaria Vaccine Initiative, was held in Bethesda, MD on October 20, 2005. Recent advancements in viral-vectored malaria vaccine development and emerging vector technologies were presented and discussed. Classic viral vectors such as poxvirus, adenovirus and alphavirus vectors have been successfully used to deliver malaria antigens. Some of the vaccine candidates have demonstrated their potential in inducing malaria-specific immunity in animal models and human trials. In addition, emerging viral-vector technologies, such as measles virus (MV), vesicular stomatitis virus (VSV) and yellow fever (YF) virus, may also be useful for malaria vaccine development. Studies in animal models suggest that each viral vector is unique in its ability to induce humoral and/or cellular immune responses. Those studies have also revealed that optimization of Plasmodium genes for mammalian expression is an important aspect of vaccine design. Codon-optimization, surface-trafficking, de-glycosylation and removal of toxic domains can lead to improved immunogenicity. Understanding the vectors ability to induce an immune response and the expression of malaria antigens in mammalian cells will be critical in designing the next generation of viral-vectored malaria vaccines.


Vaccine | 2001

Recombinant measles viruses expressing heterologous antigens of mumps and simian immunodeficiency viruses

Z. Wang; Lars Hangartner; T.I. Cornu; L.R. Martin; Armando Zuniga; Martin A. Billeter; Hussein Y. Naim

We have genetically engineered a panel of recombinant measles viruses (rMVs) that express from various positions within the MV genome either the HN or F surface glycoproteins of mumps virus (MuV) or the env, gag or pol proteins from simian immunodeficiency virus (SIV). All rMVs were rescued from the respective antigenomic plasmid constructs; progeny viruses replicated comparably to the progenitor Edmonston B MV, but showed slight propagation retardation, which was dependent on the size and nature of the expressed proteins and on the genomic position of the inserts. All transgenes except that encoding mumps F glycoprotein were faithfully maintained and expressed even after virus amplification by 10(20). Our results suggest possible applications of rMVs as live-attenuated, multivalent vaccines against retroviruses such as SIV and HIV as well as other pathogens more distantly related to MV than MuV.


Journal of Virology | 2002

Measles Virus Spreads in Rat Hippocampal Neurons by Cell-to-Cell Contact and in a Polarized Fashion

Markus U. Ehrengruber; Elisabeth Ehler; Martin A. Billeter; Hussein Y. Naim

ABSTRACT Measles virus (MV) can infect the central nervous system and, in rare cases, causes subacute sclerosing panencephalitis, characterized by a progressive degeneration of neurons. The route of MV transmission in neurons was investigated in cultured rat hippocampal slices by using MV expressing green fluorescent protein. MV infected hippocampal neurons and spread unidirectionally, in a retrograde manner, from CA1 to CA3 pyramidal cells and from there to the dentate gyrus. Spreading of infection depended on cell-to-cell contact and occurred without any detectable release of infectious particles. The role of the viral proteins in the retrograde MV transmission was determined by investigating their sorting in infected pyramidal cells. MV glycoproteins, the fusion protein (F) and hemagglutinin (H), the matrix protein (M), and the phosphoprotein (P), which is part of the viral ribonucleoprotein complex, were all sorted to the dendrites. While M, P, and H proteins remained more intracellular, the F protein localized to prominent, spine-type domains at the surface of infected cells. The detected localization of MV proteins suggests that local microfusion events may be mediated by the F protein at sites of synaptic contacts and is consistent with a mechanism of retrograde transmission of MV infection.


Vaccine | 2007

Attenuated measles virus as a vaccine vector

Armando Zuniga; ZiLi Wang; Matthias Liniger; Lars Hangartner; Michael Caballero; Jovan Pavlovic; Peter Wild; Jean Francois Viret; Reinhard Glueck; Martin A. Billeter; Hussein Y. Naim

Abstract Live attenuated measles virus (MV) vaccines have an impressive record of safety, efficacy and ability to induce life-long immunity against measles infection. Using reverse genetics technology, such negative-strand RNA viruses can now be rescued from cloned DNA. This technology allows the insertion of exogenous genes encoding foreign antigens into the MV genome in such a way that they can be expressed by the MV vaccine strain, without affecting virus structure, propagation and cell targeting. Recombinant viruses rescued from cloned cDNA induce immune responses against both measles virus and the cloned antigens. The tolerability of MV to gene(s) insertion makes it an attractive flexible vector system, especially if broad immune responses are required. The fact that measles replication strictly occurs in the cytoplasm of infected cells without DNA intermediate has important biosafety implications and adds to the attractiveness of MV as a vector. In this article we report the characteristics of reporter gene expression (GFP, LacZ and CAT) and the biochemical, biophysical and immunological properties of recombinant MV expressing heterologous antigens of simian immunogeficiency virus (SIV).


Human Vaccines & Immunotherapeutics | 2015

Measles virus: A pathogen, vaccine, and a vector

Hussein Y. Naim

Measles was an inevitable infection during the human development with substantial degree of morbidity and mortality. The severity of measles virus (MV) infection was largely contained by the development of a live attenuated vaccine that was introduced into the vaccination programs. However, all efforts to eradicate the disease failed and continued to annually result in significant deaths. The development of molecular biology techniques allowed the rescue of MV from cDNA that enabled important insights into a variety of aspects of the biology of the virus and its pathogenesis. Subsequently these technologies facilitated the development of novel vaccine candidates that induce immunity against measles and other pathogens. Based on the promising prospective, the use of MV as a recombinant vaccine and a therapeutic vector is addressed.


Human Vaccines & Immunotherapeutics | 2013

Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector

Amando Zuniga; Mathias Liniger; Teldja Neige Azzouz Morin; René R. Marty; Marian Wiegand; Orhan Ilter; Sara Weibel; Martin A. Billeter; Marlyse Knuchel; Hussein Y. Naim

The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of MVb, was constructed. Phylogenic and phenotypic analysis revealed that MVbv and the rescued MVb constitute another evolutionary branch within the hitherto classified measles vaccines. Plasmid p(+)MVb was modified by insertion of artificial MV-type transcription units (ATUs) for the generation of recombinant viruses (rMVb) expressing additional proteins. Replication characteristics and immunogenicity of rMVb vectors were similar to the parental MVbv and to other vaccine strains. The expression of the additional proteins was stable over 10 serial virus transfers, which corresponds to an amplification greater than 1020. The excellent safety record and its efficient application as aerosol may add to the usefulness of the derived vectors.


Human Vaccines & Immunotherapeutics | 2013

Relevance of a pre-existing measles immunity prior immunization with a recombinant measles virus vector

Marlyse Knuchel; René R. Marty; Teldja Neige Azzouz Morin; Orhan Ilter; Armando Zuniga; Hussein Y. Naim

Measles virus (MV) vectors are promising candidates for designing new recombinant vaccines since the parental live vaccines have a well-known safety and efficacy record. Like all viral vectors, the MV vector efficacy in inducing a protecting immune answer could be affected by the pre-existing immunity among the human population. In order to determine the optimal immunization route and regimen, we mimicked a MV pre-immunity by passively administrating MV neutralizing antibodies (MV-nAb) prior intramuscular (i.m.) and/or intranasal (i.n.) immunization with recombinant MV expressing the SIV-gag antigen (rMV-SIVgag). Our results revealed that 500 mIU of MV-nAb allowed the induction of a humoral and cellular immune response against the vector and the transgene, while higher titers of the MV-nAb were significantly inhibitory. In a prime-boost regimen, in the presence of MV-nAb, the intranasal-intramuscular (i.n.-i.m.) or intramuscular-intramuscular (i.m.-i.m.) routes induced higher humoral immune responses against the vector and the transgene (SIV-gag). In naive animals, cellular immune response was significantly higher by i.m. immunization; however, MV pre-immunity did not seem to affect the cellular immune response after an i.n. immunization. In summary, we show that a pre-existing immunity of up to 500 mIU anti-MV neutralizing antibodies had little effect on the replication of rMV and did not inhibit the induction of significant humoral and cellular immune responses in immune-competent mice.

Collaboration


Dive into the Hussein Y. Naim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Ehler

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge